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Foreword 1

This book introduces a new approach to geometry, offering
fresh interpretations of fundamental concepts such as points,
lines, planes, and space. The central idea replaces the notion of
infinity with a perspective based on “observers,” forming the
foundation of what the authors call the Mathematics with

Observers theory.

Traditional mathematics—including arithmetic, linear algebra,
calculus, geometry, differential geometry, algebra, and
functional analysis—relies heavily on the concept of infinity.
The authors propose incorporating observers into arithmetic,
rendering it dependent on these observers. Consequently, other
branches of mathematics built upon arithmetic also become
observer-dependent. The term Mathematics with Observers
encompasses both this modified arithmetic and the broader

mathematical framework derived from it.

This book specifically examines geometry within the context of

Mathematics with Observers.



The authors build on David Hilbert’s classification of geometric

properties, which include:

e Connection
e Order

Parallels (Euclidean, Gauss-Bolyai-Lobachevsky, Riemann)

Congruence

Continuity

These properties are reevaluated through the lens of

Mathematics with Observers.

Why is this approach crucial for contemporary mathematics
and physics?

When we talk about lines, planes, and geometric bodies, we
often describe them with precise definitions and characteristics.
However, where exactly do these idealized entities exist? How

do they manifest in the real world?

For example, polishing a metal plate will never produce a
perfect plane because neither the tools nor the operations used
are ideal. Due to the atomic structure of matter, achieving—or
even approximating—an ideal plane is fundamentally

impossible.



Similarly, what is a line? We might suggest that light travels in
perfect straight lines, but light consists of discrete quanta and
does not follow a continuous path. Thus classical geometry
cannot claim to have unlimited applicability to real-world

phenomena.

This limitation implies that physical space, as understood today,
must conform to the frameworks of classical geometry—
whether Euclidean or non-Euclidean. Similarly, calculations
involving large systems or measurements of vast distances rely

on the existing structure of the real number line.

Mathematics with Observers challenges these traditional
foundations, rejecting the concept of infinity and redefining
arithmetic and mathematics as a nested system of observable

constructs.

This new framework allows for a reexamination of geometry
and provides solutions to classical problems in both

mathematics and physics.

Readers are encouraged to explore previously published works
on Mathematics with Observers to gain a comprehensive

understanding of this innovative perspective.

Dmitriy Khots, PhD



President, iMath Consulting LL.C, Omaha, Nebraska

E-mail: ->dkhots@imathco.com

Foreword 2

For many people, geometry is a challenging school subject. They
learn, memorize some things, reason, and solve problems.
Moving from the plane to three-dimensional space, they
encounter the difficult term “stereometry” and the more
straightforward “trigonometry.” Some formulas become etched
in their memory for a lifetime. However, for most, their

acquaintance with geometry ends there.

The purpose of this article is to discuss geometry as a science
that plays a fundamental role in the system of knowledge. First
and foremost, it’s essential to note that ancient mathematics
was primarily geometry. As mathematics evolved, so did
geometry. Its applications expanded, and new methods and

techniques emerged.
Let’s list the names of outstanding geometers:

e Fuclid

e Legendre


mailto:dkhots@imathco.com

e Cauchy

e Gauss

e Lobachevsky
e Riemann

e Beltrami

e Bianchi

e Poincaré

e Grassmann
e Hilbert

e Cartan

e Alexandrov
e Efimov

e Pogorelov
e Pontryagin

e Chern

This list could continue indefinitely. Each of these individuals
made remarkable contributions. If we were to delve into each
one, it would fill an entire book. Their names are associated
with scientific progress, which ultimately benefits all of

humanity.

We shouldn’t forget other names like Descartes, Fermat, Pascal,
and more. Each of these geometers interacted with other

scholars, mathematicians, and specialists in related fields.



Geometry doesn’t exist in isolation; it closely interacts with

other mathematical disciplines.

In the 20th century, topology became closely connected to
geometry, leading to the specialization known as ‘geometry and
topology.” Among the names mentioned earlier, only Euclid and
Legendre have direct ties to school geometry. School geometry
textbooks are based on Euclid’s “Elements,” adapted for French
students by Legendre. It’s worth noting that A. V. Pogorelov also
authored a geometry textbook for schools, but the scientific
contributions of other geometers to secondary education

remain less known.

One distinctive feature of geometry is its abstraction. Let’s
compare the subjects of study in geometry, physics, and biology.
Physics primarily investigates the inanimate, while biology
focuses on living organisms. Many objects studied in physics

and biology are tangible and observable.

Geometric concepts, however, are quite abstract. Initially, it
seems straightforward—points, lines, triangles, rectangles,
parallelograms, and circles. But then reasoning becomes more
complex. Abstract thinking develops. Measurements of

segments and angles emerge, followed by connections between



these concepts and formulas. Thus, geometry explores metric

relationships in geometric objects.

Despite this apparent detachment from nature, geometry is, in
fact, the science closest to it. Metric relationships characterize
many natural properties. Moreover, human scientific thinking is

closely tied to geometric reasoning.

In ancient times, geometry was initially built empirically,
accumulating facts. Eventually, it was observed that a finite
number of fundamental assumptions led to all known
geometric facts. The axiomatic method emerged, first for plane
figures and later for three-dimensional space. This method
allowed for the creation of theories of multidimensional spaces,
including Hilbert’s infinite-dimensional spaces and Banach

spaces studied in functional analysis.

It is difficult to imagine that a system of axioms like this would
arise in physics or biology. However, facts are accumulating in
both fields. Scientists in physics and biology operate with
specific concepts that allow them to convey meaningful
information to each other. For instance, in physics, concepts like
mass, energy, temperature, density, pressure, entropy, and time
are used. These concepts evolve over time, and some physical

ideas are formulated using geometric concepts.



Geometry has a significant impact on physics and mechanics.
Analyzing a vast number of astronomical observations, Kepler
determined that planets move around the Sun in ellipses. This
insight allowed Newton to brilliantly confirm his law of
gravitation. In other words, geometry helped establish the

physical law of attraction between two bodies.

Another example related to gravity involves the work of famous
geometers: Lobachevsky, Gauss, Riemann, Christoffel, and
others. They developed a powerful geometric framework
describing multidimensional spaces. Einstein used this
framework to construct the general theory of relativity. Einstein
proposed a system of gravitational equations expressed using
the Riemann tensor. These equations are usually called
Einstein’s equations, which he proposed without a
mathematical derivation. It was similar to how Newton

proposed the law of universal gravitation, also without proof.

Einstein gave a lecture at Hilbert’s, and under his influence,
Hilbert derived these equations using the variational method by
varying the integral of the scalar curvature over the entire

space through changes in the space’s metric.

Friedman discovered a solution to this system that describes the

evolution of the entire universe. This triumph of geometric



thinking was beyond imagination.

Suddenly, it became clear that the fundamental property of
physical bodies—attraction to one another—could be elegantly
described using geometric concepts such as curvature and
curved space. Interestingly, even the concept of time, which
ancient geometers avoided, became geometrically treated. It
was envisioned as one of the coordinates, similar to spatial
coordinates. In four-dimensional spacetime with three spatial
coordinates ( x, y, z) and one temporal coordinate (t), a metric
was introduced. This metric allows us to measure the distance
between two points ( x1,y1, 21) and ( 2, y2, 22) by integrating
along the connecting curve. This approach is remarkably

beautiful—a true triumph of geometry.

Further exploration into matter involved introducing additional
coordinates. For example, Calabi-Yau spaces were constructed.
In 2012, authors Shing-Tung Yau and Steve Nadis published the
book “The Theory of Strings and Hidden Dimensions of the
Universe.” Yau, a renowned geometer and student of Chern,
provides insights from the heart of mathematical ideas and
numerous contacts. The book features stories and photographs
of famous geometers, primarily American ones like Chern,
Calabi, Witten, Uhlenbeck, Yang, Mills, Donaldson, Nirenberg,



and others. Russian mathematicians Pogorelov, Sobolev, and

Perelman are also mentioned.

The second chapter of the book is titled ‘The Place of Geometry
in the Cosmos,” while the fourteenth chapter raises the
question: ‘The End of Geometry? What leads the authors to
consider the possible end of geometry? They point to hidden
problems that may bring future challenges. Heisenberg’s
uncertainty principle is a stumbling block. A new term
emerges: ‘quantum geometry.” Objects at the Planck scale don’t
remain static; they constantly fluctuate, altering their
parameters, including size and curvature. The authors express
concerns about the fundamental incompatibility between
quantum mechanics and general relativity, suggesting that
geometry itself may be more derivative than fundamental. This
implies that microscopic descriptions are more fundamental,

while macroscopic properties are derived from them.

Geometry has evolved over millennia. The authors draw an
interesting comparison: ‘If the great Euclid were present at a
geometry seminar today, he would be bewildered by our
discussions. In his time, geometry focused solely on three-
dimensional space, and the concept of coordinates didn’t exist.
Euclid would undoubtedly ask, ‘What is the physical meaning of

these multidimensional spaces? How can we visualize them?’



He’d be surprised to learn that multidimensional spaces also
contain regular polyhedra, akin to those he described in his
work ‘Elements.’” While there are five regular polyhedra in
three-dimensional space, there are six in four-dimensional
space, including regular 120-cell and 600-cell polytopes. Euclid
would likely inquire, ‘Who discovered this?’ The answer:

Ludwig Schlafli, a Swiss scientist.

For higher dimensions (5D, 6D, etc.), only three regular
polyhedra exist—analogous to the tetrahedron, cube, and
octahedron. Euclid would conclude that 3D and 4D spaces are

exceptional.

Regrettably, Euclid’s book ‘Elements’ was lost during historical
upheavals, but fortunately, Arab scholars preserved it, and its
contents are now studied worldwide—a triumph for the great

mathematician.

Physicist D. Polchinski from Santa Barbara aptly paraphrases
Mark Twain: ‘Reports of geometry’s demise are greatly
exaggerated.’ He believes that geometry plays a vital role in
discoveries and is part of something greater, not something

ultimately discarded.



Albert Einstein constructed the general theory of relativity
using Riemannian geometry and linked it to gravity. His
equations describe the motion of the entire universe. Notably,
solutions like the Friedman solution are remarkable

achievements.

Einstein continued by seeking a unified field theory, believing it
should harmonize the world. He famously said, ‘God is subtle,
but not malicious,” expressing hope that geometric relationships

underlie the universe.

In the quest for unification, parameters emerge—some yielding
theories of gravity, electromagnetism, weak interactions, or
strong interactions. The unification of diverse theories may take

different forms, but it remains a fruitful pursuit.

In this book, the authors explore geometry through the lens of
Mathematics with Observers, a framework they introduced in
their earlier work. This entirely novel perspective yields
unexpected results that are not only essential for the evolution
of geometry but also for advancing our understanding of the
physical world, which relies heavily on geometric principles,

particularly in physics.



Building on their previous publications, the authors expand the
concepts of Mathematics with Observers to include geometric
contexts. A key idea introduced is the concept of a sequence of
Observers, each possessing its own arithmetic and capable of
using only a finite set of numbers. Observers with larger
numbers can utilize a broader range of numbers than those

with smaller numbers.

This approach marks a significant departure from classical
mathematics, aligning more closely with real-world limitations.
For example, the memory capacity of computers, no matter
how vast, is inherently finite. Consequently, this perspective
eliminates the concept of continuous functions. In this
framework, the classical theorem that guarantees a zero point
for a continuous function on the interval [ a, b], when the
function’s values at the endpoints have opposite signs, no

longer holds.

It is worth noting that even physicists, such as Lev Landau,
have cautioned students studying mathematics to disregard
existence theorems, famously stating, “Do not pay attention to
existence theorems. Mathematicians love to prove existence

theorems.”



The innovative ideas and results presented in this book are
poised to revolutionize modern geometry and lay the

groundwork for transformative applications in various fields.
Yuri Aminov

Professor, PhD, B. Verkin Institute for Low Temperature Physics
and Engineering of the National Academy of Sciences of

Ukraine

E-mail: >uaminov0917@gmail.com
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1 Introduction

When we study a geometry in the ninth grade at school, we
meet the beautiful set of understandable objects — points, lines,
planes, spaces, plane and space figures and solids, with natural
connections between them with natural logic of definitions and
theorems. We understand and think that this beautiful set is
real. However, when we become adults, we can ask ourselves -
where and how does this set exist? Because we know the atomic
structure of real nature and quantum nature of light, and we do

not have uniformity and continuity.

It is possible to think that geometry is a mirror of our nature
but simplified and approximate. However, this is a very naive
statement as we can not think that something is a simplified
representation of some matter if we even do not know this

matter.

To better approach the reality, in this book, we consider
geometry from Mathematics with Observers point of view.
Mathematics with Observers was introduced by the authors
based on the denial of “infinity” idea, going away from the
existing images of natural and real numbers, replacing them to

Observers-dependent sequences of finite sets and introducing



Observers-dependent arithmetic and logic. We consider in this
book the basis of classic geometry from Mathematics with
Observers point of view. As a basis for the analysis of our
intuition of space, classic Mathematics considers four systems
of things, called points, straight lines, planes, and spaces,

connecting these elements in their mutual relations (see [—2]).

Here we consider the properties of connection, order, parallels
(Euclid, Gauss-Bolyai-Lobachevsky, Riemann), congruence,

continuity from Mathematics with Observers point of view.

We show that almost all classic geometry theorems are satisfied
in Mathematics with Observers geometry with probabilities less

than 1. For example, we proved the following theorem:

“In plane EsW,,, there are a point A and a straight line b such
that A € b, and we may have three different possible

situations:

1. There is only one straight line a that contains

point A and is parallel to line b (Euclidean geometry case);

2. There is more than one straight line a that
contains point A and is parallel to line b (Gauss-Bolyai-

Lobachevsky geometry case);



3. There is no straight line a that contains point A

and is parallel to line b (Riemann geometry case).

This means that on the same plane, there are couples (point and
straight line not containing this point) where Euclidean
geometry works, other couples where Gauss-Bolyai-
Lobachevsky geometry works, and other couples where

Riemann geometry works.”

This means that classical geometry is not a limiting case of the

Observers geometry, but only a particular case of it.

As a result, we prove that Mathematics with Observers gives a
birth of a new geometry, and classical geometries become

particular cases of this new geometry.

The authors would like to thank Lauren Schultz and Wayne
Yuhasz for their friendly support. Also, the authors wish to
express their thanks to Dmitriy Khots for his valuable advices
in each step of writing this book and to Ilya Markevich for
helping us with some LaTeX complications. Also, the authors
would like to thank Ranis Ibragimov of De Gruyter for his joint
work with authors over the proposal, his very useful tips on this
process, and his presentation of this book project. The authors

would like to thank Melanie Gotz of De Gruyter for her work



with this book content editing and for her support in transfer of
authors’ LaTeX to De Gruyter standard on the stage of
typesetting. Finally, many thanks to De Gruyter cover designers.
Also the authors would like to thank Vilma Vaicelitiniené of De

Gruyter and VTeX for her help with this book production.



2 Several definitions and statements of Mathematics
with Observers

For references, see [=3] and [=1].

We call W, the set of all decimal fractions such that there are at most 2 digits in the integer part

and 2 digits in the decimal part of the fraction. Visually, an element in W5 looks like

:i:blbo.alaz,
where bl,bo,al,ag S [0, 1, 2, “ee ,9]

We call W3 the set of all decimal fractions such that there are at most 3 digits in the integer part

and 3 digits in the decimal part of the fraction. Visually, an element in W5 looks like

ib2b1b0.a1a2a3,
where bz, bl, bo, a,as,as € [O, 1, 2, ey 9]

We call W, the set of all decimal fractions such that there are at most n digits in the integer part
and n digits in the decimal part of the fraction. Visually, an element in W,, looks like
+

n n

We get W, C W, if k < n.

We call a W, -observer some system working within W,,. The set of W, -observers is a finite
well-ordered system ordered by n, and a W,,-observer sees what and how any Wj-observer
with k < n is doing in W}. However, a W-observer is unaware of the existence of W,-

observers with n > k.

Note, for example, that a Wa-observer cannot see a full set Wa, whereas a W3-observer sees
what and how a Ws-observer is doing in W3, but a W3-observer cannot see a full set Ws. Only

a W,,-observer (m > 5) can see a full set Ws.

Now we introduce arithmetic operations over numbers, elements of Ws. For ¢ = =+cyg. c1c2,
d = +dy. d1dz € W2, we endow W with the arithmetic (+2, —2, X2, +2) from the Ws-

observer point of view.



Definition 2.1.

Addition and subtraction

ctod=c=*d
if

ctde W,,
and ¢ +5 d is not defined if

C:l:df WQ,

where ¢ % d is the classic arithmetic addition and subtraction.

Examples of addition and subtraction made by a W5-observer in W:

0.08 4+ 1.9= 1.98,
(—0.08) +5 1.9= 1.82,
80 +5 44= not defined,
20.36 —2 0.87=19.49,
1.36 —2 27.95= —26.59,
2.36 —5 (—99.95)= not defined.

Definition 2.2.

Multiplication

C X9 d= :i:(CO ° do. d1d2 + 0. ciL e do. dl + 0.0(22 (] do),
where the sign + is defined as usual in classic arithmetic, - means multiplication in classic

arithmetic, and + means addition in classic arithmetic.

Examples of multiplication made by a Ws-observer in Ws:

10 x5 9= 90,

(—3) x5 16= —48,
15 x5 11= not defined,

3.41 x4 2.64= 8.98,

3.41 x5 (—2.64)= —8.98,
5.41 x5 22.64= not defined,
98.41 x5 1.64= not defined,
0.99 x5 0.09= 0.



Definition 2.3.
Division

r ifdre Ws r xod = c,
c+od=
2 not defined if no such r exists.
Examples of division in W5 made by a W-observer in Ws:

80 +24 = 20,
2+50.5 = {4, 4.01,4.02,4.03,4.04,4.05,4.06,4.07,4.08, 4.09},
so that we get 10 different r,

2 +, 3 = not defined,

since no r exists because

3 X9 0.66= 1.98,
3 X5 0.67= 2.01.
Now we introduce arithmetic operations over numbers, elements of W3. For ¢ = =+c¢y. cicac3,

d = +dy. d1dsd3 € W3, we endow W3 with the arithmetic (43, —3, X3, +3) from the W3-

observer point of view.

Definition 2.4.

Addition and subtraction

cts3d=c+td
if
ctde Ws,
and ¢ +3 d is not defined if
ctd¢ Ws,

where ¢ * d is the classic arithmetic addition and subtraction.

Examples of addition and subtraction in W3 made by a W3-observer in W3:

0.008 +3 1.09= 1.098,
(—0.008) +5 1.09= 1.082,
800 +3 440= not defined,
20.036 —3 0.087= 19.949,
1.036 —3 27.095= —26.59,
2.736 —3 (—999.195)= not defined.



Definition 2.5.

Multiplication

C X3 d= :E(CO ° d(). d1d2d3 +0.cp @ do. d1d2 4+ 0.0cy @ do. dl + 0.00c5 @ do),
where sign + is defined as usual in classic arithmetic, - means multiplication in classic

arithmetic, and + means addition in classic arithmetic.

Examples of multiplication in W3 made by a W3-observer in Wj:

100 x3 9 = 900,
(—30) x3 14= —420,
150 x 3 10= not defined,
3.415 x 3 2.648= 9.036,
3.415 x5 (—2.648)= —9.036,
15.412 x 3 221.645= not defined,
998.418 x 3 1.645= not defined,
0.999 x 3 0.009= 0.

Definition 2.6.
Division

) r ifdr e W3 rx3d =c,
C —+— =
3 not defined if no such r exists.
Examples of division in W3 made by a W3-observer in W3:

600 <34 = 150,
2305 = {4, 4.001,4.002,4.003,4.004,4.005,4.006,4.007, 4.008, 4.009},
so that we get 10 different r,

2 +, 3 = not defined,
since no r exists because

3 x30.666= 1.998,

3 x30.667= 2.001.
Generally, we now introduce arithmetic operations over numbers, elements of W,,. For
c=cp.C1...Cpd=dy.dy...d, € W,, we endow W,, with the arithmetic (+,, —pn, Xn, +n)

from the W,,-observer point of view.



Definition 2.7.

Addition and subtraction

L g ctd ifctde W,,
C e

" not defined ifct+d ¢ W,
where ¢ * d is the standard addition and subtraction, and we write

N
(((fl +nf2)) —|—an) :ani

for f1,..., fn iff the contents of any parenthesis are in W, f1,..., fx € W,.
Definition 2.8.
Multiplication
n n—k
cxpd=) ") ""0.0...0c-0.0...0dy,
R0 m=0 m—1
where
c,d >0,
Co d() € Wn,
0.0...0¢; - 0.0...0d,,
k-1 m—1

is the standard product, and £k = m = 0 means that

0.0...0c; = ¢
k—1
and

0.0...0d,, = dy.
m—1

If either ¢ < 0 or d < 0, then we compute

lc| X4 |d|
and define

¢ Xpd==|c| x, |d
where the sign + is defined as usual. Note that if the content of at least one parenthesis (in the

previous formula) is not in W,,, then ¢ X, d is not defined.



Definition 2.9.
Division

. 4 r ifdre W, rx,d=c,
C—+ = . . .
" not defined if no such r exists.
Observers and arithmetic generate randomness and probability in Mathematics with Observers.

Note that the probability of some event in W,, depends on the W,,,-observer (m > n).
We have not classic arithmetic situations in Mathematics with Observers:

1. Additive associativity may fail.

For example, let 20,90, —30 € W,. Then 20 45 90 ¢ W5, and hence

(20 +9 90) +9 (—30) ¢ Ws
and

20 +4 (90 —9 30) =80 € W,.
However, for 10, 20, 30 € W,, we have

10 +3 (20 45 30) = (10 +2 20) +2 30 = 60 € W,.
2. Multiplicative associativity may fail.

For example, let 50.12, 0.85,0.61 € W,. Then

50.12 x5 0.85 = 42.58; (50.12 X9 0.85) X9 0.61 = 25.92,
whereas

0.85 x20.61 = 0.48; 50.12 x5 0.48 = 24.04.
However, for 10, 2,3 € W5, we have

10 x22=20; (10 x22) x2 3 = 60.00,
2 x93=6; 10 x5 (2 x23)=160.00.
3. Distributivity may fail.

For example, let 1.81,0.74,0.53 € W,. Then

0.74 +50.53 = 1.27; 1.81 x51.27=2.24; 1.81 x50.74=1.3; 1.81 x50.53 =0.93,
so that

1.81 x5 0.74 +5 1.81 x5 0.53 = 2.23 #£ 2.24.
However, for 10, 2,3 € W5, we have



10 X5 (2 +23) = 10 X5 2 +5 10 x5 3 = 50.00.

We define the space E,,W,, as follows. Consider the Cartesian product of m copies of W ,:

EW, =W, x- - xW,.

m

We call a “vector” any element from

E, W, :a=(a,...,am),

aly .- 0, € W,
If
a,be E,,W,,
a= (a1,...,an),

b= (bl,...,bm),a € Wh,
then we define

a+nb: (afl +nb1aaf2 +nb2a---aa'm +nbm)
ifa; +, b1,a2 +, ba,...,a;, +, by € W, and

aXpa=(aX,Q1,...,0Q Xy )
ifa,a X, a1,...,a X, a, €W,.

We will use the following notations: a, b, ¢ mean vectors, and a, 8 mean scalars.
Addition associativity in E,,W,, does not exist.

There is no associativity of scalar multiplication.

There is no distributivity of scalar multiplication.

There is no distributivity of scalar multiplication for vector sums.

We define the scalar product of vectors

a=(ay,...,an), b= (by,...,by) € E,W,
as the following sum:

(a, b) = ( .. ((a1 Xn b1 +n Q2 X, bg) +n a3 X, b3) +n TR Qm Xp bm)
The scalar product in E,,W,, is not distributive.

Scalar multiplication on scalar product in E,,W,, is not associative.



The squared length of a vector a is

a]* = (a,a),

Vl0al? e W,

The space E3W,, contains three standard vectors:

but the length itself is calculated as

and does not always exists.

i= (1,0,0),
j=(0,1,0),
k= (0,0,1).

We have

(i> i): (jaj) = (k’ k) =1,
=il = k| =1,

(iaj): (i7 k) = (kaj) =0,
i.e,i,]j, kis an orthonormal basis in E3W,,.

We define the vector product of vectors

a = (a1,a2,a3), b= (b1,bs,b3) € EsW,,
as the vector

ax b= (a2 ang —n a3 an2) Xni_n
_n(afl Xn b3 —n Q3 Xnp bl) an+n
—|—n(a1 anz —n Q2 anl) Xnk.
Note that:

The vector product in E3W),, is not distributive;
Scalar multiplication on the vector product in F3W,, is not associative;
The equality

ax(bxc)=(a,c)x,b—p(a,b)x,c
is incorrect in E3Wp;

The equality

(a,b xc)=(axb,c)



isincorrect in E3W,,.



3 Observability and geometry: points, straight lines,
planes, and spaces

Let us consider two Cartesian products of W,:

E2Wn: Wn X Wna
EsW,= W, x Wy, x Wi,
We call “point A” any element

(x7 y)7 m? y E Wm
of EsW, or any element

(J?, Y, Z), x,Y,z € Wm
of E3Wn

We call (z,y) and (z, y, z) the coordinates of point A € EyW,, and € E3W,,, respectively, and

write

A(z,y)€ EW,,
A(z,y, z)€ EsW,.
For EsW,,, we have the standard basis:

e;=1i=(1,0,0),
€2=] = (O’ 17 0)’
es— k = (0,0,1)

For any vector A = (z,y, z) € E3W,, we have

A=z x,i+,yX,j+nzx, k.
So the coordinates of “point A” in E3W,, coincide with coordinates of the corresponding vector

A, and for any two points A(x1, y1, 21) and B(zs, ¥s, 22), we have the vector

AB = (2 —n T1,Y2 —n Y1, 22 —n 21)-
For E5W,,, we have the standard basis

€1— i= (1, 0),
e2:j = (07 1)7
and for any vector A = (z,y) € E;W,,, we have

A=zxx,i+,y X,]-



So the coordinates of “point A” in E,W,, coincide with coordinates of the corresponding vector

A, and for any two points A(xy,y;) and B(zs, y) we have the vector

AB = (23 — 21, Y2 —n Y1)-
We call the “straight line a € E;W,,” the set of all points A(z,y) € E;W, satisfying the

equation

a] Xp @ +pa2 XnyY+na3 =0
for all

a1,a2,03,a1 Xp T,02 XpY,01 Xpn T +p A2 Xp Y € Wn
such that (a1, as) # (0,0). Two equations

a1 Xp T +p a2 Xy +pa3 =0
and

bl an+nb2 ><ny_}'nb3 =0
define the same straight line if and only if the set of all points A(z,y) € E;W, satisfying the
first equation and the set of all points A(z,y) € E;W, satisfying the second one coincide.

We call the “plane o € E3W,,” the set of all points A(z,y, z) € E3W, satisfying the equation

a1 Xp T +p a2 Xp Y+, a3 an+na4:0
for all

Q1,02,Q3, Q4,01 Xp T,02 Xp Y, 03 X5 2,01 X T 4502 Xp Y, 01 Xpn T+ 02 Xp Y +,a3 Xp 2 €
such that (ay, as, as) # (0,0,0). Two equations

a1 Xpn T +p Q2 XY +5, a3 an+na4:0
and

bl Xn$+nb2 Xny+nb3 an+nb4 =0
define the same plane if and only if the set of all points A(z, y, z) € E3W,, satisfying the first
equation and the set of all points A(z, y, z) € E3W,, satisfying the second one coincide.

We call the “straight line a € E3W,,” the set of all points A(z, y, z) € E3W,, satisfying the
system of equations

a1 X T +p Q2 Xn Y +p a3 X 2 +p ag = 0,
{51 XnT +nb2 Xny+nb3 Xpn2z+,b4=0
for all ay, as, as, ag, by, by, b3, by € W, such that (ay, as, as) # (0,0,0) and
(b1, ba, b3) # (0,0, 0), and satisfying the remaining plane conditions, provided that these two



planes do not coincide. Two systems of equations

{0,1 Xpn € 45 Q2 Xp Y+ a3 an+na4:0a
b1 Xn T 45 b2 Xny+nb3 XnZ4+nbs=0
and

C1 XnT +nC2XpnY+pC3Xp2+ncC4= 07
{dl Xn& +nde XnyY+nd3 Xp2z+nds =0
define the same straight line if and only if the set of all points A(z,y, z) € E3W, satisfying the
first system of equations and the set of all points A(z, y, z) € EsW), satisfying the second one

coincide.

Note that multiplication and addition in straight line and plane formulas are going up by

corresponding pairs from left to right. We also assume that all these elements belong to W,

Theorem 3.1.
A straight line a € EoW,, is a straight line a € EsW,,.

Proof.
The set of all points A(z,y) € E,W, satisfying the equation

a1 Xp & +p a2 Xpy +npa3 = 0
coincides with the set of all points A(z, y, z) € E3W,, satisfying the system of equations

a1 Xp & +4 a9 Xny+na3 - O,
z=0.
We have to make several notes.

1. Let us consider two straight lines in FoW,:

a:x—py+,1=0,

b:2x,2—32X,y+,2=0.
In classical geometry, these two straight lines coincide, but in Mathematics with Observers,
they do not. For example, if n = 2, then

A(50,51) € a,
but

A(50, 51) Zb.
2. Let us consider



m_ny_‘_n]-zoa
z = 0;

2Xp T —p2Xp,y+,2=0,
{z =0.

In classical geometry, these two straight lines coincide, but in Mathematics with Observers,

they do not. For example, if n = 2, then

A(50,51,0) € a,

but
A(50,51,0) Zb.
3. Let us consider two planes in FsW,,:
a
w+ny+nz_n3 =0
and
B:

2XnT+n2XnY+n2Xpnz—6=0.
In classical geometry, these two planes coincide, but in Mathematics with Observers, they do

not. For example, if n = 2, then

A(50, —50, 3) € a,
but

A(50,—50,3) & 5.

4, Let us consider ten different equations of straight lines in E>W5:



aj : 99.99 x9z=1.98,

az: 99.98 xo = 1.98,

as:99.97 x9 x= 1.98,

a4 :99.96 x4 x= 1.98,

as : 99.95 X9 = 1.98,

ag : 99.94 x, x= 1.98,

ar:99.93 xox=1.98

as . 99.92 Xo = 1.98,

ag : 99.91 x4 x= 1.98,

aig - 99.90 x5 x= 1.98.
All these equations describe the same straight line having the set of points A(0.02, y) with
any y € Wo.
5. Let s consider ten different equations of planes in FsW:

aq:99.99 x5 z=1.98,
a9 99.98 Xo = 1.98,
ag: 99.97 X9 = 1.98,
ay:99.96 X9 = 1.98,
as: 99.95 X9 = 1.98,
ag: 99.94 X9 = 1.98,
a7 :99.93 X z=1.98,
asg 99.92 Xo = 1.98,
ag: 99.91 X9 x=1.98,
aqo ¢ 99.90 X9 2= 1.98.
All these equations describe the same plane having the set of points A(0.02, y, z) with any
Y,z € Wa.

6. Let us consider three straight lines in FoW5:

a:y=u=z,

b:2><2y:2><2m,

c:0.1 x9y=0.1x52.
We get

bCacCec
because



a=U(z,x), =z Wy,

b= U(z,z), x€[—49.99,—49.98,...,-0.01,0,0.01,...,49.98,49.99] C Wy,

c=U(z,y), z==xgx123€ Ws, yE [xg.210,20. 211, 2¢. 212, ...,20.219] € Wa.
Note that in classical geometry, these three straight lines coincide, but in Mathematics with
Observers, they do not.

7. Let us consider two straight lines in FoW,,:

a:y=ki xpz+nli = f(x),
b:y=ky X+, 1l = g(z).
The functions f and g are single-valued functions. The superposition of these functions is:

f(g(:l?)) = k1 Xy (k2 Xn T +n l2) +n 1,

whereas in classical geometry,

y=f(g9(z)) = (kroky) ez + (krola+1l)=kez+]I,
where
k= k10k2,

= kl ® l2 + ll,
and -, + mean classic multiplication and addition, respectively.

This means that in classical geometry the superposition of functions representing straight

lines is again a function representing a straight line.
Let us consider this situation in Mathematics with Observers.

8. Let n = 2 and consider two straight lines in FoWj:

a:y=2xyz = f(),
b:y=3 xoz = g(z).
We get the sets a and b as subsets of FoW,:

..., (49.99,99.98)],
b= [(—33.33, —99.99), (—33.32, —99.96), ..., (—0.01, —0.03), (0, 0), (0.01,0.03), . .

...,(33.33,99.99)].
Of course, all these sets can see any W,,,-observer with m > 5.

a= [(—49.99, —99.98), (—49.98, —99.96), .. ., (—0.01, —0.02), (0,0), (0.01,0.02), . ..

The functions f and g are single-valued functions. The superposition of these functions is

fg(®)) =2 x5 (3 xa2) = (2 x23) X2 = 6 X, 1,



because for any £ € W5 and r € Z such that » X5 x € W, the result of multiplication

coincides with classic arithmetic multiplication.
We also get the set f(g(x)) as a subset of EoWo:

f(g9(z)) = [(—16.66,—99.96),...,(—0.01,—0.06), (0,0), (0.01,0.06), . .., (16.66,99.96)].
This means that in this case the superposition of functions representing straight lines a and b

is again a function representing a straight line c:

c:y=06Xxy.
o. Let again n = 2 and consider other two straight lines in EyWj:

a:y=1.96 x2z = f(x),
b:y=2.87 xyz = g(x).
The functions f and g are single-valued functions. The superposition of these functions is

f(g(z)) = 1.96 x5 (2.87 x5 z).

As we know,

53 = Xy (ﬁ Xn’}’) —n (a Xnﬁ) Xn Y, (Oé,,B,’Y S Wn)
is a random variable in W,,, and d3 = 0 with probability P < 1. This means that in this case

the superposition of functions representing straight lines a and b is not a function

representing a straight line.

10. Let again n = 2 and consider the straight line in E2W5:

a:0.01 xoy=0= f(x).
We get the set a as a subset of EoWo:

a=[(z,-0.99), (z,—0.98),..., (z,—0.01), (z,0), (z,0.01),. .., (,0.99)]
forall z € W,.

Of course, this set can see any W,,,-observer with m > 7.
The function fis a multivalued function.
Let us consider the transformation of the parallel shift along the y-axis in EsW5, for example,

y—y—1=g(y).
The superposition of the functions f and g is

f(9(y)) =0.01 x5 (y — 1) =0,



_y -2 1 — —0.01, _y = 099:
and we get y —9 1= 0, So we have y = 1, So does the set f(g(y))

y—,1=10.0, y =1.01,

y—y1=0.98, y =198,
y—,1=0.99. y =1.99.

represent a straight line or not? Since

0.01 x5 (y—1) =0,
an answer to this question is positive only if the solution of the equation

0.01 x,y = 0.01
coincides with solution of the equation

0.01 x5 (y —9 1) =0
considered above.

However, the equation

0.01 x5y = 0.01

y=1
y =1.01,
has the solutions + + « ¢ ¢ ¢« This means the set f(g(y)) does not represent a straight line,

y =198,
y =199.

that is, the straight line transformation of parallel shift along the y-axis in E3W5 may not



represent a straight line. o



4 Observability and analysis of connections of points,
straight lines, and planes

4.1 First property of connections

Let us consider two distinct points € EyW,,:

A(z1,91), B(z2,92)-
Questions: Is there a straight line AB = BA = a € EsW,, containing these points? Is this line

uniquely defined?
Let us consider several examples.

1) Let us take n = 2 and A(0, 2), B(1,2) € E;W,. We are looking for a straight line a as a set
of points (z, y) satisfying the equation

a; X9 +2a2 X9y +gas =0.
We have

{al X9 0 +2a3 X22+2a3 =0,
aq ><21+2a2 ><22+2a3:0.
We get

al] = 0,
as = —2 Xy ay,
that is, the equation of a straight line a is

as X2y22 X9 Q9.
This means the following:

1. For each a4 such that

1 < |as| < 49.99,
we get a straight line as the set of points (z, 2) with all x € W.

2. For each a9 such that

0.1 < az| <0.99,
we get a straight line as the set of points

[(z,2); (z,2.01); (z,2.02);...; (z,2.09)]



with all x € Ws.

Note that here and everywhere further, by

[u,v,...]
we denote the set of elements u, v, . . ..

3. For each a9 such that

0 < |az| < 0.09,
we get a straight line as the set of points

[(z,2); (z,2.01); (z,2.02);.....; (z,2.09); (z,2.1); .. .; (2, 2.19); (2,2.2); .. .; (=, 2.99)]
with all x € Ws.

So the points A(0,2) and B(1,2) determine three different straight lines. This means that two
distinct points € E5,W,, may not uniquely determine a straight line containing these points.

1) Let us take E3W5 and the points A(0, 2,0) and B(1,2,0).
We are looking for a straight line a as the set of points (z, y, ) satisfying the system of equations

{al Xox +2a2 X2y+2a3 =0,

z=0.
We have
a1 X20+2a2 X22+2a3 =0,
a1 X9 149a9 X92+9a3 =20,
z=0.
We get
a1=0,
a3=—2 X2 a2,
z=0,

that is, the equation of a straight line a is

as X2y =2 X2 as,
z =0,
which means the following:

1. For each a9 such that

1 < |ag| < 49.99,



we get a straight line as the set of points (z, 2,0) with all z € Wj.

2, For each a4 such that

0.1 < |as| <0.99,
we get a straight line as the set of points

[(z,2,0); (z,2.01,0); (z,2.02,0);...; (z,2.09,0)]
with all z € W,.

3. For each a4 such that

0 < |as| <0.09,
we get a straight line as the set of points

[(af;, 2,0); (z,2.01,0); (x,2.02,0);...;(z,2.09,0); (z,2.1,0);...;(z,2.19,0);...; (z,2.99,
with all z € W,.

So the points A(0, 2,0) and B(1, 2, 0) determine three different straight lines. This means that

two distinct points € E3W,, may not uniquely determine a straight line containing these points.

2) Let us continue to consider the same question in ;W and take other two points

A(99.99,0), B(0,98.88).
Again, we are looking for a straight line o as the set of points (, y) satisfying the equation

a1 Xo & +9ay X9y +oa3=0.
We have

{al X9 (9999) +9 a9 X9 (O) +9 a3 = 0,
ai X9 (0) 492 ag X2 (98.88) +2a3 =0.
We must have

la1] <1, |az| <1.01,
which means that

a1 X2 (99.99) = a2 x2 (98.88).
All possible positive a; form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x» ® = [0.99,1.98,...,98.82,99.99].
All possible positive as form the set



¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 X9 W = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 PN 98.88 xo ¥ = A,
where A here and further is the empty set.

So a straight line a containing the points 4(99.99,0) and B(0, 98.88) does not exist, that is, two
distinct points € F5W,, may not determine a straight line containing these points.

2’) Let us continue to consider same question in F/3W5 and take other two points

A(99.99,0,0), B(0,98.88,0).
Again, we are looking for a straight line o as the set of points (z, y, z) satisfying the system of

equations

a1 X2 T +2as Xgy+2a3 =0,
z=0.
We have

ai] Xo (9999) “+9 a9 Xo (0) +9a3 =0,
a1 X2 (0) +2 a2 X2 (98.88) +2 a3 = 0,
z=0.

We must have

|0,1’ S 17 |a’2| S 1017
which means that

ay X5 (99.99) = as x5 (98.88).
All possible positive a; form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
All possible positive a5 form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 x5 ¥ =[0.98,1.96,...,97.74,98.88,99.86].



Direct calculations show that

99.99 x5 ®M98.88 xo3 ¥ = A.
So a straight line a containing the points 4(99.99,0,0) and B(0, 98.88,0) does not exist, that

is, two distinct points € E3W,, may not determine a straight line containing these points.

3) Let us continue to consider same question in E5W5 and take other two points

A(99.99,0), B(0,98.37).
Again, we are looking for a straight line a as the set of points (z, y) satisfying the equation

a1 X9 +92a2 X9y +gas = 0.
We have

{al X9 (9999) +9 ao X9 (O) +9a3 =0,
a1 X2 (0) +2 a2 X2 (98.37) +2a3 = 0.
We must have

|a1| S 1, |a2| S 101,
which means that

a; X9 (9999) = a9 X2 (9837)
Again, all possible positive a; form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
Again, all possible positive ao form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.37 X, W = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 xo N 98.37 X ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a; = 0.62; ay—=0.63; a3—= —61.92.
So there is only one straight line a containing the points A4(99.99,0) and B(0, 98.37), that is,

two distinct points € FyW,, uniquely determine a straight line containing these points.



3’) Let us continue to consider the same question in E3W, and take other two points

A(99.99,0,0), B(0,98.37,0).
Again, we are looking for a straight line o as the set of points (z, y, z) satisfying the system of

equations

a; X9 +2a3 X2y +g2a3 =0,
z=0.

We have

ai Xo (9999) “+9 a9 Xo (0) +9a3 =0,
a1 X2 (0) +2 a2 X2 (98.37) +2a3 =0,
z=0.

We must have

|a1| S 1, |a2| S 101,
which means that

a] X9 (9999) = a2 X9 (9837)
Again, all possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
Again, all possible positive ao form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.37 Xy W = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 xo N 98.37 X ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a1 =0.62; ay =0.63; a3=—61.92.
So there is only one straight line a containing the points 4(99.99, 0, 0) and (0,98.37,0), that is,

two distinct points € E,W,, uniquely determine a straight line containing these points.

4) Let us take again n = 2 and A(0,0), B(1,1) € E;W,. We are looking for a straight line a as
the set of points (z,y) € EyW, satisfying the equation



aq Xzil?—f—g(],g ><2y—|—2a3:0.

We have
{CLl X20+20,2 ><20+2(13:0,
a1 X21+2a2 Xx21+4+2a3 =0,
that is,
as = 0,
a1 X921 -+9as ><21:0,
that is,
{ag = 0,
ay — —az,
that is,

a:a)p Xo& —2a; X2y=0.
Note that for any positive a1, line a contains points A and B, but for two different values of a1,

the corresponding lines a = a,, may be different too. Moreover, if

al >a? >0,
then

agl C ag2.
Conclusion: Mathematics with Observers geometry in EoW,, and in E3W),, does not satisfy the

first property of connection of classical geometry:

“Two distinct points A and B always uniquely determine a straight line a: AB = a or BA =a

»

The probability of correctness of this statement in Mathematics with Observers geometry is less
than 1.

We get three different possibilities in Mathematics with Observers geometry in F2W,, and
E3 Wni

1. Such a straight line exists and uniquely determined.
2, Such a straight line exists but is not uniquely determined.
3. Such a straight line does not exist.

So we proved the following:



Theorem 4.1.

In Mathematics with Observers geometry in plane E;W,,, there are two distinct points A and B such
that the straight line a containing these points does not exist.

Theorem 4.2.

In Mathematics with Observers geometry in plane E5W,,, there are two distinct points A and B such
that the straight line a containing these points exists and is uniquely determined.

Theorem 4.3.

In Mathematics with Observers geometry in plane E5W,, there are two distinct points A and B such
that the straight line a containing these points exists and is not uniquely determined.

Theorem 4.4.

In Mathematics with Observers geometry in space EsW.,,, there are two distinct points A and B such
that the straight line a containing these points does not exist.

Theorem 4.5.

In Mathematics with Observers geometry in space EsW.,,, there are two distinct points A and B such
that the straight line a containing these points exists and is uniquely determined.

Theorem 4.6.

In Mathematics with Observers geometry in space EsW.,,, there are two distinct points A and B such
that the straight line a containing these points exists and is not uniquely determined.

4.2 Second property of connections

Let us consider three distinct points € EoW,,:

A($17 y1)7 B("E% y2)7 0(3737 y3)-
Let a straight line o be given by the equation

a1 Xpn & +p a2 XY +nas =0
and contain points A and B, so that

{al Xn &1 +n a2 Xn Y1 +na3 = 0,
a1 Xpn T3 +n a2 Xp Yz +naz =0.
Let the same straight line a contain points A and C, so that

{al Xn &1 +n a2 Xn Y1 +na3 = 07
a1 Xp T3 +n a2 Xp Y3 +naz =0.
Question: Does the straight line BC' coincide with line a?

1) Let us continue to consider the same set s W5 and take three points

A(0,98.37), B(99.99,0),C(99.91,0).
There is unique straight line a containing points A and B, that is, AB = a, BA = a, and a is the

set of all points (z,y) € EyW, satisfying the equation



0.62 X5z +50.63 X9y —261.92 =0.
Direct calculations show that also point C' € a, AC = a and CA = a.

Let us consider the straight line BC":

a1 Xpn T +p 02 XpyY+pa3= 0.
We have

{al X9 (9999) +2 a3 X9 (0) +92a3 = 0,
ail X2 (99.91) +9 a9 X9 (0) +2a3 =0,
and one of solutions of this system of equations is line a:

a1 =0.62; a; =0.63; a3=—61.92.
However, we also have another set defined by the equation

a1 X9 (9999) = a1 X9 (9991)
The solution of this equation is

a; € [0,£0.01,+0.02,...,+0.98,+0.99].
For a; = 0, we get

a; — 0,

as = Oa

as XnYy = Oa
which means the following:

1. For each a4 such that

1 < |as| <99.99,
we get a straight line as the set of points (z, 0) with all z € W.

2. For each a4 such that

0.1 < |as| <0.99,
we get a straight line as the set of points

[(z,0); (z, £0.01); (z, £0.02); . . . ; (=, £0.09)]

with all x € Ws.

3. For each a4 such that

0 < |as| <0.09,
we get a straight line as the set of points



[(z,0); (=, £0.01); (z, £0.02); . . . ; (z, £0.09); (=, £0.1); . . . ; (z, £0.19); . . . ; (=, £0.99)]
with all z € W,.

So the points B(99.99,0) and C'(99.91, 0) determine more than one different straight lines.
This means that the straight line BC does not coincide with line a, but line a is only one of

several other lines BC.

1’) Let us consider set E3W, and take three points

A(O, 98.37, ()), B(99.99, 0, 0), C(99.91, 0, 0).
There is a unique straight line a containing points A and B, thatis, AB = a, BA = a, and a is

the set of all points (z,y, z) € E3W, satisfying the system of equations

0.62 X9 +90.63 x9 Y —2 61.92 = 0,
z=0.
Direct calculations show that point C' € a, AC = a,and CA = a.

Let us consider a straight line BC'"

a1 Xn T +npa2 Xpy—+pnaz =0,
z=0.
We have

a1 X2 (99.99) +5 as X2 (0) +9 a3 = 0,
a1 X5 (99.91) +3 as X2 (0) +2 a3 =0,
z=0,

and one of solutions of this system of equations is line a:

a1 = 0.62; a2 =0.63; a3=—61.92.
However, we also have other sets defined by the equation

ai X9 (99.99) = a1 X2 (99.91).
A solution of this equation is

a1 € [0,£0.01,+0.02,...,+0.98,+0.99].
For a; = 0, we get

a1=0,
a3:0,
as X,y =0,
z =4,

which means the following:



1. For each a4 such that

1< |as| < 99.99,
we get a straight line as the set of points (z,0,0) with all z € W.

2. For each a9 such that

0.1 < az| <0.99,
we get a straight line as the set of points

[(z,0,0); (z, £0.01,0); (2, £0.02,0); . . . ; (, £0.09, 0)]
with all x € Ws.

3. For each a4 such that

0 < |as| <0.09,
we get a straight line as the set of points

[(m, 0,0); (z,+0.01,0);...; (z,£0.09,0); (z, £0.1,0);...; (z, £0.99, 0)]
with all x € Ws.

So the points B(99.99,0,0) and C(99.91,0,0) determine more than one different straight line.
This means that the straight line BC does not coincide with line a, but line a is only one of

several other lines BC.

2) Let us continue to consider the same set Eo W5 and take three points

A(99.99,0), B(0,98.37),C(51.02,48.16).
There is a unique straight line a containing points A and B, that is, AB = a, BA = a, and a is

the set of all points (z,y) € EoW, satisfying the equation

0.62 X9z +20.63 X2y —261.92 = 0.
Direct calculations show that also point C' € a. Let us define the line AC and check whether
AC = a or not. We have

{CLl X9 (9999) “+9 a9 X9 (0) “+9 ag = 0,
al X9 (51.02) +92 a2 X2 (48.16) +2a3 =0.
One of the solutions is line a:

al = 0.62; az = 0.63; as = —61.92.
Let us try to find other solutions if they exist. We get



a1 X9 (9999) = a1 X2 (5102) “+9 a9 Xo (4816),
that is,

ai; X9 (9999) —n a1 X2 (5102) = a9 X2 (4816)
We must have

la;1|€ [0,0.01,0.02,...,0.98,0.99, 1],
laz|€ [0,0.01,0.02,...,0.98,0.99,1,1.01,...,1.99,2,2.01,
Direct calculations show the following:

1. If
a; € [j:0.0l,...,j:0.0Q],
then
a; = ay,
and
a; = £+0.01,
as = 1+0.01,
a3 = F0.99,
a; = £0.09,
as = £0.09,
as = :|:891

For example, let us consider the straight line b:

0.01 x,, £+, 0.01 x,, y —, 0.99 = 0.
Direct calculations show that the point (30, 69) € b but

0.62 x5 30 445 0.63 x5 69 —3 61.92 # 0.
This means that a and b are different lines.

2. If

a; € [+£0.61,...,+0.69],
then for positive a1,

a9 = a1 —p 001,
and for negative a1,

as = aq +y, 001,

...,2.07).



and

a; = 0.61,
as = 0.60,
as = —60.93,
a; = 0.69,
as = 0.68,
a3 = —68.85.

For negative aq,

as = aj +, 001,
and we have

a; = —0.61,
as; = —0.60,
a3 = 60.93,
a; = —0.69,
az = —0.68,
a3 = 68.85.

For example, let us consider the straight line c:

0.61 X,  +, 0.60 X, y —, 60.93 = 0.
Direct calculations show that the point (50.01,49.99) € ¢ but

0.62 x2 50.01 +2 0.63 x249.99 —5 61.92 £ 0.
This means that a and c are different lines.

2’) Let us consider the set E'3WW, and take three points

A(99.99, 0, 0), B(O, 98.37, 0), C(51.02, 48.16, 0).
There is a unique straight line o containing points A and B, i.e., AB = a, BA = a, and a is the

set of all points (z,y, z) € E3W) satisfying the system of equations

0.62 X9 ¢ +90.63 x9 Y —2 61.92 = 0,
z=0.
Direct calculations show that also point C' € a.

Let us define the line AC and check whether AC = a or not. We have



a1 X5 (99.99) +2 as X3 (0) +2 a3 =0,
ai X2 (51.02) +92 a2 X2 (48.16) +2a3 =0,
z=0.

One of the solutions is line a:

a1 =0.62; az=0.63; a3=—61.92.
Let us try to find other solutions if they exist. We get

a1 X2 (99.99) = a1 X2 (51.02) +92 a2 X2 (48.16),
that is,

ai X2 (99.99) —n a1 X2 (51.02) = a2 X2 (48.16).
We must have

la1|€ [0,0.01,0.02,...,0.98,0.99, 1],
las|€ [0,0.01,0.02,...,0.98,0.99,1,1.01,...,1.99,2,2.01,...,2.07].
Direct calculations show the following:

1. If
a; € [i0.0l,...,j:0.0Q],
then
a; = ay,
and
a; = £0.01,
as = £0.01,
az = F0.99,
a; = 1+0.09,
as = 10.09,
a3 = F8.91.

For example, let us consider the straight line b:

0.01 x,, z +, 0.01 x,, y —, 0.99 =0,
z=0.
Direct calculations show that the point (30,69, 0) € b but

0.62 x9 30 +20.63 x969 —9 61.92 7& 0.
This means that a and b are different lines.



a; € [£0.61,...,+0.69],
then for positive a1,

a9 = A1 —p 001,

and
a; = 061,
a2 = 0.60,
a3 = —60.93,
a1 = 0.69,
az = 0.68,
a3 = —68.85.
For negative aq,
a9 — a1 +n 001,
and we have
a; = —0.61,
as = —0.60,
a3 = 60.93,
a; = —0.69,
a2 = —0.68,
a3z = 68.85.

For example, let us consider the straight line c:

0.61 x, x +,0.60 x, y—p 60.93 =0,
z=0.
Direct calculations show that the point (50.01,49.99,0) € ¢ but

0.62 x5 50.01 +5 0.63 x5 49.99 —5 61.92 # 0.
This means that a and c are different lines.

3) Let us take again E,W, and A(0, 2), B(1,2), C(2,2). There are three straight lines
containing points A(0, 2) and B(1, 2):

The equation of line AB is



az X2y =2 X3 as,
and we get the following:

1. For each a9 such that

1 < |as| < 49.99,
we get a straight line as the set of points (z, 2) with all z € Wj.

2. For each a4 such that

0.1 < |ag| <0.99,
we get straight line as the set of points

[(z,2); (z,2.01); (z,2.02);.... .; (z,2.09)]
with all z € W,.

3. For each a9 such that

0 < |as| <0.09,
we get a straight line as the set of points

[(z,2); (z,2.01); (z,2.02);...; (,2.09); (z,2.1);...; (z,2.19); (z,2.2);...; (z, 2.99)]
with all z € W,.

When we consider the straight lines containing points A(0, 2) and C(2, 2), we get

{CLl ><20+2a2 ><22+2(13=0,
a1 X22+2a2 X22+2a3 =0,
and

ai :0,
az = -2 X2 a2,

as ><2y=2><2a2.

that is, a straight line equation is

This means that points A and C define the same three straight lines as points A and B.

When we consider the straight lines containing points B(1,2) and C(2, 2), we get

{al Xo14+2as X22+2a3=0,
a1 X92+49as X9 2+9a3 =0,
and



ai :07
a3 = —2 X3 az,

that is, a straight line equation is

as X2y =2 Xz az
So, in this case, we have the situation where three distinct points € EsW,,,

A(0,2), B(1,2),C(2,2),
define the same set of three different straight lines in any pair combination.

3") Let us take E3W5 and A(0, 2,0), B(1,2,0), C(2,2,0). There are three straight lines
containing the points A(0, 2,0) and B(1,2,0):

The equation of line AB is

and we get the following:

1. For each a2 such that

1 < az| < 49.99,
we get a straight line as the set of points (z, 2,0) with all z € W.

2. For each a» such that

0.1 < |az2| <0.99,
we get a straight line as the set of points

[(z,2,0); (z,2.01,0); (z,2.02,0);....; (=, 2.09,0)]
with all z € W,.

3. For each a4 such that

0 < |as| <0.09,
we get a straight line as the set of points

[(:1:, 2,0); (z,2.01,0);...;(z,2.09,0); (z,2.1,0);...;(z,2.19,0); (z,2.2,0);...; (z,2.99,0
with all x € Wa.

When we consider the straight lines containing the points A(0, 2,0) and C(2,2,0), we get



aq ><20—i—2a2 ><22—|—2a3:(),
a1 X22+2a2 X22+2a3 =0,
z=0,

al :0,
a3 = —2 X3 ay,

az X2y =2 X3 a2,
z=0,

and
that is, a straight line equation is

which means that points A and C define the same three straight lines as points A and B.

When we consider the straight lines containing the points B(1,2,0) and C(2, 2, 0), we get

a1 X2 1+2a2 X22+2a3 =0,
a1 X9249as X92+9a3 =20,
z=0,

and

ay :0,
ag = —2 X2 a2,

{az X9y =2 Xgay,

that is, a straight line equation is

z=0.
So, in this case, we have the situation where three distinct points € EsW,,

A(0,2,0), B(1,2,0),C(2,2,0),
define same set of three different straight lines in any pair combination.

So we have proved the following:

Theorem 4.7.

In Mathematics with Observers geometry in plane EoW,, there are three distinct points A, B, C such
that the straight line a = AB containing these points exists and is uniquely determined, but there is
more than one line b = AC), thatis, AB # AC.

Theorem 4.8.

In Mathematics with Observers geometry in plane EoW,,, there are three distinct points A, B, C such
that the straight line a = AB = AC containing these points exists and is uniquely determined, but
there is more than one line b = BC, i.e., AB # BC.

Theorem 4.9.



In Mathematics with Observers geometry in plane E;W,,, there are three distinct points A, B, C such
that there are more than one straight line AB containing these points, more than one straight line
AC, and more than one straight line BC, but these three sets of straight lines coincide.

Theorem 4.10.

In Mathematics with Observers geometry in space EsW.,,, there are three distinct points A, B, C such
that the straight line a = AB containing these points exists and is uniquely determined, but there is
more than one line b = AC, thatis, AB # AC.

Theorem 4.11.

In Mathematics with Observers geometry in space E3W,,, there are three distinct points A, B, C such
that the straight line a = AB = AC containing these points exists and is uniquely determined, but
there is more than one line b = BC, thatis, AB #* BC.

Theorem 4.12.

In Mathematics with Observers geometry in space EsW.,,, there are three distinct points A, B, C such
that there are more than one straight line AB containing these points, more than one straight line
AC, and more than one straight line BC, but these three sets of straight lines coincide.

4.3 Third property of connections
Let us consider three distinct points € EsW,,:

A(xla Y1, 21), B(xZa Y2, 22), 0(9037 Y3, 23)
such that the vectors

AB = (2 —n 1,Y2 —n Y122 —n 21); AC = (T3 —n T1,Y3 —n Y1,23 —n 21)
are not parallel.

Questions: Is there a plane ABC' = a € E3W,, containing these points? Is this plane uniquely
defined?

We are looking for the “plane ABC = a € E3W,,” as the set of all points A(z,y, z) € EsW,
satisfying the equation

a1 Xp T +p 02 XpyY+,a3 Xy 2+,a4 =0
for all a1, as, a3, aq € W, such that (ay,as,a3) # (0,0,0).

1) Let us first consider three distinct points € E3Ws:

A(l, 0, 0), B(O, 1, 0), C(O, 0, 1).
In this case, the vectors

AB=(-1,1,0), AC=(-1,0,1)
are not parallel. We get the system



aq ><21—|—2a2 ><20—|—2a3 ><20—|—2a4:0,
a1 X20+2a2 X214+2a3 x20+2a4 =0,
a1 X20+2a2 X20+2a3 x2142a4 =0,

and so
aip = az,
a; = ag,
a, = —as.

So the equation of plane a in this case is

a1 X9 & 49 ay ><2y—|—2a1 X9 2 —9 Q7 =0.
For a; = 1, we get plane «; with equation

m+2y+2z—21=0.
For a; = 0.01, we get plane a; with equation

0.01 X9z +20.01 X5y +420.01 x5 2—50.01 =0.
Let us take the point D(0.2,0.2,0.6) € E3W,. We get

02+202+206—21=0.

So
D < ay,
but
0.01 x5 0.2 +50.01 x50.02 +5 0.01 x5 0.06 —5 0.01 # 0,
and thus

a1 # Q.
This means that three points

A(1,0,0),B(0,1,0),C(0,0,1) € EsW,
not completely (not uniquely) determine the plane ABC = «. Note that plane a contains not
only points A, B, C, but also other points, for example, the point L(1,—1,1).

1A) Let us again consider three distinct points € E3Ws:

A(1,0,0), B(0,1,0),C(0,0,1).
We again get the system



aq ><21—|—2a2 ><20—|—2a3 ><20—|—2a4:0,
a1 X20+2a2 X214+2a3 x20+2a4 =0,
a1 X20+2a2 X20+2a3 x2142a4 =0,

and so
aip = az,
a; = ag,
a, = —as.

So the equation of plane a in this case is

a1 X9 & 49 ay ><2y—|—2a1 X9 2 —9 Q7 =0.
Note that for any positive a, plane a contains points A, B, and C, but for two different values of

a1, the corresponding planes o = «,, may be different too. Moreover, if

al > a? >0,
then
Qg C Q.
1 1
If we consider all situations
a; € [0.01, 0.09], [0.10, 0.19], cee [0.90, 0.99]. [1.00, 98.99], [99.00, 99.09], ceey [99.90, 99.99],

then we get solutions for each case.

2) Let us continue to consider the same question in E'5W, and take other three distinct points

A(99.99, 0, 0), B(O, 98.88, 0), C’(O, 0, 1).
In this case, the vectors

AB = (—99.99,98.88,0), AC =(—99.99,0,1)
are not parallel.

Again, we are looking for the “plane ABC' = a € E3W,” as the set of all points
A(z,y, z) € E3W, satisfying the equation

a1 X2 +oas X2ytaag Xa2z+2a4=0
for all a1, as, a3, aq € Wy such that (aq, as,a3) # (0,0,0). We get the system

a1 X9 99.99 +2 a2 ><20+2 as ><20+2 a, :0,
aq ><20+2 ag X9 98.88 +2 a3 X20+2 a, :0,
a1 Xo0+2a2 X20+2a3 xX21+2a4 =0,

or



a1 X299.994+5a4 =0,
a2 X2 98.88 +2a4 =0,
ag Xa21+4+9a4 =0.

We must have

|a1| <1, |a2| < 1.01,
and we have

al X9 (99.99) = a2 X2 (98.88).
All possible positive a; form the set

® = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x, ® = [0.99,1.98,...,98.82,99.99].
All possible positive ao form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 xo U = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 N 98.88 x2 ¥ = A.
This means that for three distinct points

A(99.99,0,0), B(0,98.88,0),C(0,0,1) € E3W>,
which form not parallel vectors

AB = (—99.99,98.88,0), AC =(-99.99,0,1),
the plane ABC' € E3W> does not exist.

3) Let us continue to consider the same question in E3W53 and take other three distinct points

A(99.99, 0, O), B(O, 98.37, 0), C(O, 0, 1).
In this case the vectors

AB = (—99.99,98.37,0), AC =(-99.99,0,1)
are not parallel.

Again, we are looking for the “plane ABC' = a € E3W3” as the set of all points
A(z,y, z) € EsW, satisfying the equation



a1 Xa @ +2a3 Xa2y+2a3 xX22+2a4 =0
for all a1, aq, a3, as € Wy such that (aq, as,a3) # (0,0,0). We get the system

ai X9 99.99 +2 a2 ><20+2 ag Xo 0+2 a, — 0,
a1 X2042a3 X298.37+2a3 x20+2a4 =0,

a1 X20+2a2 X20+2a3 X21+2a4 =0,
or

a1 X299.99 +2a4 =0,
as X998.374+49a4 =0,
az +9 a4 = 0.

We must have

lai] <1, |asg| <1.01,
and thus

a] X9 (9999) = a9 X9 (9837)
We get the following:

All possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
All possible positive ay form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.37 Xy W = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 xo N 98.37 X ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a1 =0.62; ay=0.63; a3=6192; a4=—61.92.
So there is only one plane a containing the points 4(99.99,0,0), B(0,98.37,0), C(0,0, 1), that
is, three distinct points € E3W5 with not parallel vectors AB and A C uniquely determine a

plane containing these points.

So we have proved the following:



Theorem 4.13.

In Mathematics with Observers geometry in space EsW,,, there are three distinct points A, B, C with
not parallel vectors AB and A C such that there is no plane containing these points.

Theorem 4.14.

In Mathematics with Observers geometry in space E3W,, there are three distinct points A, B, C with
not parallel vectors AB and A C such that there is a unique plane containing these points.
Theorem 4.15.

In Mathematics with Observers geometry in space E3W,, there are three distinct points A, B, C with
not parallel vectors AB and A C such that there is more than one plane containing these points.

4.4 Fourth property of connections
Let us consider any plane o € E3W,, and take any three distinct points in this plane:

A(xla Y1, zl)a 3(932, Y2, 22), 0(9037 Y3, 23)
such that the vectors

AB = (2 —n 1,Y2 —n Y1522 —n 21); AC = (T3 —n T1,Y3 —n Y1,23 —n 21)
are not parallel.

Question: Do these three points A, B, C of a plane a completely determine that plane?

1) Let us consider this question in F/3W5 and take the plane a:

0.62 X9 & +9 0.63 Xo Y +29 61.92 X9 Z —9 61.92 = 0.
As we have shown in Section —4.3, for three distinct points

A(99.99, 0, O),B(O, 98.37, 0), C’(O, 0, 1) € a,
the vectors

AB = (—99.99,98.37,0), AC =(-99.99,0,1)
are not parallel. We also proved there that there is only one plane a containing the points
A(99.99,0,0), B(0,98.37,0), C(0,0,1), that is, three distinct points € E3W3 with not

parallel vectors AB and A C uniquely determine a plane containing these points.
2) Let us continue to consider this question in E3W5 and take a plane a:

T+oy—+22—21=0.
As we have shown, three distinct points

A(1,0,0), B(0,1,0),C(0,0,1) € «
define the nonparallel vectors



AB = (-1,1,0), AC=(-1,0,1).
We also proved there that these three points not completely (not uniquely) determine a plane a.

For example, plane S:

0.01 X9 @ +50.01 X9y +20.01 X52—50.01=0
also contains the same three points A, B, C, but a # (.

So we have proved the following:

Theorem 4.16.

In Mathematics with Observers geometry in space EsW,,, there are a plane a and three distinct points
A, B,C € a with nonparallel vectors AB and A C such that only a unique plane a contains these
points.

Theorem 4.17.

In Mathematics with Observers geometry in space E3W,, there are a plane a and three distinct points
A, B,C € a with nonparallel vectors AB and A C such that there is more than one plane
containing these points.

4.5 Fifth property of connections

Let us consider two planes o € E3W,, and 8 € E3W,,, where a is the set of points (, y, 2)
satisfying the equation

a1 Xp T +n 02 Xn Y +5 03 Xy 2+, a4 =0,
and B is the set of points (z, y, z) satisfying the equation

bl an+nb2 ><ny_{'nb3 an+nb4 =0
for given a1, as, as, a4, by, be, bg, by € W, such that (aq, as,a3) # (0,0,0) and

(bb b27 b3) 7& (0, 0, O)

Let the straight line a € E3W,, be the set of all points A(z,y, z) € E3W, satisfying the system

of equations

{a1 Xn T +n a2 XnY+n a3 Xn 2+nas =0,
b1 Xn$+nb2 ><ny+nb3 an+nb4 =0.
Question: If two points A, B of a straight line ¢ lie in a plane y, then does every point of g lie in y?

1) Let the plane o € E3W, be the set of points (z, y, z) satisfying the equation

Y—2 1= 07
and let the plane 8 € E3W, be the set of points (z, y, z) satisfying the equation



zZ—9 1=0
So the straight line a € E3W, is the set of all points A € E3W, with coordinates (z,1,1),

where x is any element € W.
Let the plane v € E3W, be the set of points (z, y, z) satisfying the equation

0.01 X9 +9 Y—22—9 0.99 = 0.
Let us take two points A, B of a straight line a:

A(99.99,1,1),B(99.31,1,1).
For both points, we have

099 +91—51=0.99.
So

Aec~n, Ben.
Now let s take the third point C of a straight line a:

C’(48.61, 1, 1).
Then we have

0.48 451 —51=0.48 # 0.99.
This means that point C does not belong to plane y. So, in this case, we get the negative answer

for the question above.

2) It is clear that if we take any of two planes a € E3W,, or § € E3W,, determining a straight
line g as a plane y (i.e., @« = =y or 8 = -y) and take two points A, B of this straight line a, then

every point C of a lies in a or 8.

So, in this case, we get positive answer for the question above. Thus we have proved the

following:

Theorem 4.18.

In Mathematics with Observers geometry in space E3W,, there are a plane y and a straight line a with
two distinct points A, B € a M -y such that any point C' € a belongs to plane y, that is, a € .
Theorem 4.19.

In Mathematics with Observers geometry in space E3W,, there are a plane y and a straight line a with
two distinct points A, B € a M~y such that there is a point C' € a that does not belong plane to y, that

is, a & 7.



4.6 Sixth property of connections

Let us consider two planes o € E3W,, and 8 € EsW,,, where a is the set of points (z, y, 2)

satisfying the equation

a1 Xp T +p 02 XY +pa3 Xp 2+, a4 :07
and S is the set of points (z, y, z) satisfying the equation

by Xpn T+ ba Xny+nb3 XnZ+nby=0
for given a1, as, as, a4, by, ba, bg, by € W, such that (a1, as,as) # (0,0,0) and

(b1,b2,b3) # (0,0,0).

Suppose these two planes have a common point A(x1,y1, 21), that is, point A satisfies the
system of equations

{al Xn & +na2 XnyY+n0a3 Xn2+,a4 =0,
bl an+nb2 Xny+nb3 an+nb4:07
that is,

{al Xn @1 +n @2 Xn Y1 +n a3 Xn 21 +nag =0,
by Xp @1 +5 b2 X5 Y1 +0 b3 X 21 +5, b4 = 0.
Question: Does this system always have at least a second solution, point B(x3, ys, 22)?

1) Let us consider two planes a € E3W5 and 8 € E3W,, where a is the set of points (, y, 2)

satisfying the equation

99.99 X9z —298.88 Xoy+22=0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
These two planes have a common point A(0, 0,0). Let us see whether there a second common

point B(z3, Y2, 22).

Point B has to satisfy the system of equations

99.99 X9 x —9 98.88 X9 y+9 2 =0,
z=20,
and we have

99.99 x9 & —2 98.88 x5y = 0.
We must have



x| <1, [yl <1.0L
All possible positive x form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® = [0.99,1.98,...,98.82,99.99].
All possible positive y form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 Xy W = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 ® N 98.88 xo ¥ = A.
So point B does not exist, that is, in this case, planes a and 8 have only one common point.

2) Let us take two planes a € E3W, and S € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

z =0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
These two planes have a common point A(0, 0,0), and the set of common points of planes a and
Bis [B(0,y,0)], where y is any element of W,,, that is, there is more than one in common point
B.

So we have proved the following:

Theorem 4.20.

In Mathematics with Observers geometry in space EsW.,,, there are two planes a and B having only a
unique common point.

Theorem 4.21.

In Mathematics with Observers geometry in space E.3W ,, there are two planes a and B having more
than one common point.

4.7 Seventh property of connections

Questions: a) Does every straight line € E,W,, contain at least two points?



b) Does every straight line € F3W,, contain at least two points?
¢) Does every plane € E3W,, contain at least three points not lying in the same straight line?
d) Does the space E3W,, contain at least four points not lying in any plane?

1) Let us consider the straight line a € EoW, with equation

99.99 Xy x —298.88 X9y = 0.
The point A(0,0) € a. We must have

2/ <1, [yl <1.0L
All possible positive x form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® =[0.99,1.98,...,98.82,99.99].
All possible positive y form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 xo W = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 X9 $ N 98.88 xo ¥ = A.
So the straight line a contains only one point, that is, the answer to question a) in this case is

negative.

1’) Let us consider the straight line a € E, W, with equation

y=0.
The point A(0,0) € a, and also any point B(z,0) € a with z € W. So the straight line a

contains more than one point, that is, the answer to question a) in this case is positive.

So, we have proved the following:

Theorem 4.22.

In Mathematics with Observers geometry in plane EoW,,, there is a straight line a having only one
unique point.

Theorem 4.23.



In Mathematics with Observers geometry in plane EoW,, there is a straight line a having more than
one point.
2) Let us consider two planes a € E3W, and 8 € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

99.99 X9 —298.88 Xoy+92=0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
The straight line a € E3W5 is defined by the system of equations

{99.99 Xo T —998.88 X9y +92=0,
z=0,

and we have

99.99 X9 x —9 98.88 x5y = 0.
So we have only one point A(0, 0, 0) as a solution of this system, that is, the straight line a

contains only one point, so the answer to question b) is negative.

2°) Let us consider two planes a € E3W, and 8 € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

y=0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
The straight line a € E3W, is defined by the system of equations

{y=m
z=0,

a: [A(z,0,0)]

for all x € W5. So we have more than two points A as solutions of this system, that is, the

and we have

answer to question b) is positive.

So we have proved the following:

Theorem 4.24.
In Mathematics with Observers geometry in space EsW,,, there is a straight line a having only one

unique point.
Theorem 4.25.



In Mathematics with Observers geometry in space EsW,,, there is a straight line a having more than
one point.
3) Let us consider the plane a € E3W, as the set of points (z, y, z) satisfying the equation

99.99 X9 x —2 98.88 x5y = 0.
The set of points satisfying this equation is

[A(0,0,2)],
where z is any element € W,. So the set of all points € « is the straight line a € E3W, defined

x=0,
y=0,

that is, in this case the answer to question c) is negative.

by the system of equations

3") Let us consider the plane a € E3W, as the set of points (z, y, z) satisfying the equation

T+oy+toz—21=0.
Let us take three points satisfying this equation:

A(1,0,0),B(0,1,0),C(0,0,1).
Let us prove that these three points do not lie in the same straight line. Let A, B, C' € a, where

line a is defined as the solution of the system of equations

{m+zy+2z—21=0,
b1 ><2x+2b2 ><2y+2b3 X22+2b4:0.

We get
T+oy+t22—21=0,
by X2 1+39by X20+2b3 x20+2b4 =0,
by x2042bs x2142b3 x20+42bs4 =0,
bl X20+2b2 X20+2b3 X21+2b4:0.
We have

x+oy+2z—21=0,

by = by,
bl - b37
by = —bs,

and line o is defined as the solution of the system of equations

{m—|—2y+2z—21:0,
b1 X9z +2 b1 Xzy—l—zbl X9 z—9b1 =0.



If we call

by X9 @ +2b1 Xoy+2b; X92—2b; =0
plane S, then we get

anp=a,
or

anNpB=p
depends on the coefficient by (clearly, b; # 0). This means that points A, B, C do not lie in the

same straight line. So in this case the answer to question c) is positive.

So we have proved the following:

Theorem 4.26.

In Mathematics with Observers geometry in space EsW.,,, there is a plane a such that any three
distinct points A, B, C' € « lie in the same straight line.

Theorem 4.27.

In Mathematics with Observers geometry in space E3W,, there are a plane a and three distinct points
A, B,C € a not lying in a straight line.

4) Any plane a € E3W,, has the equation

a1 Xp T +p a2 XpY~+pa3 Xy 2+, ag =0.
Let us take four points satisfying this equation:

A(O, 0, 0), B(l, 0, 0), C’(O, 1, 0), D(O, 0, 1),
that is, we have

a1 Xp 045 a2 X, 0+, a3 X, 044 a4 =0,

a1 Xpl4+pa2 Xp 04, a3 X, 04, a4 =0,

a1 Xp0+pa2 Xp1l+ya3 X, 044,a4 =0.

a1 Xp04,a9 X, 04+,0a3 X, 1+, a4 =0.
This means that

a1 =0,
as =0,
a3=O,
as = 0.

So plane a containing all points A, B, C, D must have the equation

OXpnx+n0Xpy+n0xp2+,0=0,
but by definition we must have the condition



(al, as, a,3) 7& (O, 0, 0)
This means that the answer to question d) is positive.

So we have proved the following:
Theorem 4.28.

In Mathematics with Observers geometry the space EE.3W,, contains at least four points A, B, C, D not
lying in any plane a.

4.8 Point and line theorem
We have the following classical geometry theorem:

“Two straight lines of a plane have either one point or no common point; two planes have no
common point or a common straight line; a plane and a straight line not lying in it have no

point or one common point.”

We get the following questions:

a) Do two straight lines of a plane have either one point or no common point?
b) Do two planes have no common point or a common straight line?
c) Do a plane and a straight line not lying in it have no point or one common point?

Let us start with question a).
1) Let us take two straight lines a, b € EsW,, where a satisfies the equation

3 X 2L —9Y — O,
and b satisfies the equation

Y—2 1=0.
Because the number 3 does not have an inverse number in W5, we get

anNb=A
that is, the straight lines a and b have no common points. Note that these two lines are not
parallel in the classical sense.

1’) Let us take two straight lines a, b € E3W,, where a has the system of equations



3 X 2L —9 Y = 0,
z =0,
and b has the system of equations

{y_leoa
z=0.

anNb=A,
that is, the straight lines a and b have no common points.

We get

2) Let us take two straight lines a, b € E2W5, where a has the equation

0.08 X2z +20.03 X2y —20.11 =0,
and b has the equation

T —23.00 =0.
On the interval 1 < z < 5, line a contains only the set Q of points A(z,y) € E2Ws:

Q = [A(z,y)]= [z € [1.00,1.01,...,1.99],y € [1.00,1.01,...,1.99]] U

U[z € [4.00,4.01,...,4.99],y € [-7.00,—7.01,...,—7.99]].
We get again

anNb=A,
that is, the straight lines o and b have no common points. Again, note that these two lines are not

parallel in the classical sense.

2’) Let us take two straight lines a, b € E3W5, where a has the system of equations

0.08 X9z +20.03 X2y —20.11 =0,
z =0,
and b has the system of equations

A

{:E —93.00 =0,

We get again

anNb=A,
that is, the straight lines a and b have no common points.

3) Let us take two straight lines a, b € EsW,, where a has the equation

3><2:1:—2y:0,



and b has the equation

y=0.
We get

anb= A(0,0),
that is, the straight lines o and b have one common point A.

3’) Let us take two straight lines a, b € E3W5, where a has the system of equations

IxXgx—2y=0,
z=0,
and b has the system of equations

We get

anb= A(0,0,0),
that is, the straight lines o and b have one common point A.

4) Let us take two straight lines a, b € E2W3, where a has the equation
and b has the equation
We get

anb= A(0.00, 0.00),
that is, the straight lines a and b have one common point A.

4’) Let us take two straight lines a, b € F3W3, where a has the system of equations
xz =0,
z=0,
y=0,
z=0.

anb=A(0,0,0),

and b has the system of equations

We get



that is, the straight lines a and b have one point A.

5) Let us take two straight lines a, b € EsW,, where a has the equation

0.01 X9 & 9 0.01 X9 Yy = O,
and b has the equation

y=0.
We get

anb=[(0,0),(+0.01,0), (+£0.02,0),...,(+0.99,0)],
that is, the straight lines a and b have two hundred common points (from the point of view of

W ,.-observer, m > 3).

5°) Let us take two straight lines a, b € E3W5, where a has the system of equations

0.01 X2 +20.01 X2y =0,
z =0,
and b has the system of equations

We get

anb=[(0,0,0),(£0.01,0,0), (+0.02,0,0),...,(+0.99,0,0)],
that is, the straight lines a and b have two hundred common points (from the point of view of

W.-observer, m > 3).

So question a) has the negative answer: two distinct straight lines of a plane may have no point,

one common point, or more than one common point.

So we have proved the following:

Theorem 4.29.

In Mathematics with Observers geometry in plane E2 W, there are two distinct straight lines a and b
suchthataNb = A.

Theorem 4.30.

In Mathematics with Observers geometry in plane E2 W, there are two distinct straight lines a and b
such that a N b contains only one point.

Theorem 4.31.

In Mathematics with Observers geometry in plane EoW,, there are two distinct straight lines a and b
such that a N b contains more than one point.

Theorem 4.32.



In Mathematics with Observers geometry in space EsW.,,, there are two distinct straight lines a and b
suchthataNb = A.

Theorem 4.33.

In Mathematics with Observers geometry in space EsW,,, there are two distinct straight lines a and b
such that a N b contains only one point.

Theorem 4.34.

In Mathematics with Observers geometry in space E3W,, there are two distinct straight lines a and b
such that a N b contains more than one point.

Let us go to question b). Let us consider two planes a € E3W,, and 8 € E3W,,, where a is the

set of points (z, y, z) satisfying the equation

a1 Xp T +p 02 XpY+p0a3 Xp 245, a4 :07
and B is the set of points (z, y, z) satisfying the equation

bl an+nb2 Xny+nb3 an+nb4:0
for given a1, as, as, a4, by, ba, bg, by € W, such that (a1, as,a3) # (0,0,0) and
(b1, by, b3) # (0,0,0).

1) Let us take two planes a € E3Ws, and 8 € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

T —29 1= 0,
and S is the set of points (z, y, z) satisfying the equation

x =0.
We get

anpB=A,
that is, the planes a and 8 have no common points.

2) Let us take two planes o € E3W, and § € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

z =0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
These two planes have a common point A(0, 0, 0), and the set of common points of planes a and

Bis [B(0,y,0)], where y is any element of W,,, that is, there is a straight line a € E3W:

xz =0,
z=0.



This means that two planes o € E3W5 and 8 € E3W, have a common straight line a.

3) Let us consider two planes a € E3W, and 8 € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

99.99 X9 —298.88 Xoy+92=0,
and S is the set of points (z, y, z) satisfying the equation

z=0.
These two planes have a point A(0, 0, 0) in common. Let us see whether there is a second

common point B(zs, ya, 22).

Point B has to satisfy the system of equations

99.99 X9 x —9 98.88 X9y +9 2 =0,
z=0,
and we have

99.99 xo x —2 98.88 X9y = 0.
We must have

2| <1, [yl <1.01.
All possible positive x form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® =[0.99,1.98,...,98.82,99.99].
All possible positive y form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 X9 W = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 ® N 98.88 xo ¥ = A.
So point B does not exist, that is, in this case the planes a and 8 have only one common point.

4) Let us consider two planes a € E3W, and S € E3W,, where a is the set of points (z, y, 2)

satisfying the equation

99.99 X9 —298.37T Xy +22=0,



and S is the set of points (z, y, z) satisfying the equation

z=0.
These two planes have a in common point A(0, 0, 0). Let us see whether there are other

common points (, y, z). These points have to satisfy the system of equations

99.99 X9 x —9 98.37 X y+9 2 =0,
z=0,
and we have

99.99 xy x —9 98.37 X9y = 0.
We must have

| <1, [yl < 1.0L
All possible nonzero x form the set

® = [£0.01,+0.02,...,+0.99,+1.00],
and we get

99.99 x5 ® = [+0.99,+1.98,...,498.82,4+99.99].
All possible nonzero y form the set

¥ = [+0.01,+0.02,...,+0.99,+1.00, +1.01],
and we get

98.88 X9 ¥ = [i0.98, +1.96,...,+97.29, +98.37, j:99.35].
Direct calculations show that

99.99 x5 N 98.37 x» ¥ = [(0.62,0.63), (—0.62, —0.63)].
So in addition to point A, we have two points B(0.62,0.63,0) and C(—0.62,—0.63,0) such
that

anp=I[A,B,C,
that is, these two planes have three common points.

So question b) has the negative answer: two planes may have no point, one point, or more than

one common point or a straight line.

So we have proved the following:

Theorem 4.35.
In Mathematics with Observers geometry in space E3W,, there are two distinct planes a and B such
thataN B = A.



Theorem 4.36.

In Mathematics with Observers geometry in space EsW,,, there are two distinct planes a and B such
that a N [ contains only one point.

Theorem 4.37.

In Mathematics with Observers geometry in space E3W.,, there are two distinct planes a and B such
that a N [ contains more than one point.

Theorem 4.38.

In Mathematics with Observers geometry in space E3W,,, there are two distinct planes a and B such
that a N [ contains a straight line.

Let us go to question c).

1) Let us consider the plane o € E3W, with equation

z=0
and the straight line a € E3W, with system of equations
T —2 1= 0,
z=0.
We get
aNa=A,

that is, the straight line a does not lie in the plane a, and a and o have no common point.

2) Let us consider the plane a € E3W5 with equation

=0
and the straight line a € E3W, with system of equations

{y_leoa
z—91=0.

aNa=A(0,1,1),
that is, the straight line a does not lie in the plane a, and a and a have one common point A.

We get

3) Let the plane a € E3W> be the set of points (z, y, ) satisfying the equation

Y—2 1= 07
and let 8 € E3W3 be the set of points (z, y, z) satisfying the equation

z—2 1=0.
Let the straight line a € E3W5 be the set of all points A € E3W5 defined by the system of

equations



Y—2 1=0,
z—9 1=0.
It is the set of points in E3W, with coordinates (z, 1, 1), where x is any element of W.

Let the plane v € E3W, be the set of points (z, y, z) satisfying the equation

0.01 X9 +olY—22—23 0.99 = 0.
Let us take two points A, B of a straight line a:

A(99.99, 1, 1), B(99.31, 1, 1).
For both points, we have

099 +91—51=0.99.
So

Aen, Ben.
Now let us take a third point C of a straight line a:

0(48.61, 1, 1).
We have

0.48 491 —51=0.48 # 0.99.
This means that point C does not belong to plane y, that is, the straight line a does not lie in plane

¥, and y and a have at least two common points A and B.

So question c) has the negative answer: a plane and a straight line not lying in it may have no

point, one point, or two or more common points.

So we have proved the following:

Theorem 4.39.

In Mathematics with Observers geometry in space E3W,, there are a plane a and a straight line a not
lying in this plane such that o Na = A.

Theorem 4.40.

In Mathematics with Observers geometry in space E3W,,, there are a plane a and a straight line a not
lying in this plane such that e N a contains only one point.

Theorem 4.41.

In Mathematics with Observers geometry in space E3W,,, there are a plane a and a straight line a not
lying in this plane such that oo N a contains more than one point.

So the “point and line theorem” of classical geometry is incorrect in Mathematics with Observers

geometry.



4.9 Line and plane theorem
Classical geometry contains the following theorem:

“Through a straight line and a point not lying in it, or through two distinct straight lines

having a common point, one and only one plane may be made to pass.”
We have the following questions:

a) Is it correct that through a straight line and a point not lying in it, one and only
one plane may be made to pass?

b) Is it correct that through two distinct straight lines having a common point, one

and only one plane may be made to pass?
Let us go to question a).

1) Let us take the straight line a € E3W5 defined by the system of equations
y=0,
z=0,

A(0,99.99, —98.88) € EsW,.
We are looking for the plane a € E3W, as the set of points (z, y, z) satisfying the equation

and the point

a1 X2 T +gas X2y—+aag X2 2+ga4 =0,
where a1, as, a3, as € Wy such that (aq,as,a3) # (0,0,0), and the conditions

aca Aca.
Line a is the set of points with coordinates (z,0,0) € E3W5, where x is any element € W5. We
must have

aq X2£B+2a4:0.

a1 =0,
(1,4:0.

So we can rewrite the equation of plane a as

This means that

a2 X9 Y +39 a3 XQZ:O.
Since A € «, we have



ag X9 99.99 —9 a3 X9 98.88 = 0.
We must have

las] <1, |as| < 1.01.
All possible positive a5 form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
All possible positive a3 form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 xy W = [0.98, 1.96,...,97.74,98.88, 99.86].
As above, direct calculations show that

99.99 x5 $ M 98.88 x5 ¥ = A.
So plane a does not exist.

2) Let us take three distinct points in E3W:

A(1,0,0), B(0,1,0),C(0,0,1).
Let a straight line o contain points A and B. Because the vectors

AB = (-1,1,0), AC=(-1,0,1)
are not parallel, point C does not belong to line a. Another way to prove this is as follows.

Line a has the system of equations

{b1 X9 T +2by Xy +2b3 =0,

z=0,
that is,
bl ><21+2b2 X20+2b3:0,
b1 X20+2b2 Xx21+2b3 =0,
z =0,
that is,
b1 = ba,
bl _b?n



that is, line a has the system of equations

by Xgx +2by Xoy—2b; =0,
z =0,

and C ¢ a.

Now we are looking for plane a containing line a and point C as the set of points

(z,y, 2) € E3W, satisfying the equation

aq ><2:1:—|—2a2 ><2y—|—2a3 ><2z+2a4:O.

We get the system
a; Xol+gas X90+3a3 X20+2a4 =0,
a1 X20+42a2 Xxa1+2a3 X20+2a4 =0,
a; X0 +ga3 X90+3a3 Xg1+9a4 =0,
and so
aip = az,
a; = as,
ay, — —aj.

So the equation of plane a in this case is

a1 X9 +2a1 X9y +ga; Xg92—90a1 = 0.
For a; = 1, we get plane a; with equation

THo2y+22z—21=0.
For a; = 0.01, we get plane a; with equation

0.01 X9 & 49 0.01 Xo Y +2 0.01 X9 2 —9 0.01 =0.
Let us take the point D(0.2,0.2,0.6) € E3W,. We get

0.2420.2+506 —1=0.

So
D e< ay,
but
0.01 x5 0.2 +50.01 x5 0.02 45 0.01 x5 0.06 —5 0.01 # 0.
Thus

a1 # as.



This means that a straight line and a point not lying in it not completely (not uniquely)

determine a plane a that may be made to pass.

3) Let us take the straight line a € E3W, with system of equations
y=0,
z=0,

A(0,99.99, —98.37) € EsW,.
We are looking for the plane a € E3W, as the set of points (z, y, z) satisfying the equation

and the point

a1y X2 +oas Xo2y+taag Xa2z+2a4=0
with a1, as,a3,a4 € W such that (aq, as, as) # (0,0, 0) and conditions

aca, Aca.
Line a is the set of points with coordinates (z,0,0) € E3W5, where x is any element € Ws. We

must have

aq X2$—|—2a4:0.

{a1 = 0,
as = 0.

So we can rewrite the equation of plane a as

This means that

as X2 Y +2as X9 z=0.
Since A € a, we have

as X9 99.99 = asg X2 98.37.
We must have

laz] <1, |az| < 1.01.
All possible positive ao form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x, ® = [0.99,1.98,...,98.82,99.99].
All possible positive a3 form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get



98.37 X, ¥ = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 x5 ® N 98.37 xo, ¥ = [61.92],
and we get only one point in intersection of these two sets, that is,

a; = 0; Ao = 062, as = 0.63 ay = 0.
So in this case, there is only one plane a containing line a and point A. Thus question a) has the
negative answer: Through a straight line and a point not lying in it, no plane, one plane, or more

than one plane may be made to pass.

So we have proved the following:

Theorem 4.42.

In Mathematics with Observers geometry in space EsW.,,, there are a straight line a and a point A not
lying in this line such that there is no plane a containing this line and point.

Theorem 4.43.

In Mathematics with Observers geometry in space E3W.,, there are a straight line a and a point A not
lying in this line such that there is only one plane a containing this line and point.

Theorem 4.44.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and a point A not
lying in this line such that there is more than one plane a containing this line and point.

Let us go to question b).
1) Let us take three distinct points € E3Wj:

A(1,0,0), B(0,99.99,0),C(0,0,98.88).
Let the straight line o contain points A and B, that is, a = AB, and let the system of equations of

this line be

a1 X2 +2a3 Xoy+oa3 Xg2z+za4 =0,
z=0.
Since A, B € a, we have

ai +2a4 =0,
a2 X299.99 42 a4 =0,
that is,

a; = ag X9 99.99.
al = —a4.
So we can rewrite the system of equations of line a as



z=0.
We see that the point C(0, 0, 98.88) does not belong to line a because its coordinate z # 0. We

{(0,2 X9 9999) X9 & +2Q3 XoY —2 QA X2 99.99 = O,

can make the same statement also because the vectors

AB =(-1,99.99,0), AC =(-1,0,98.88)
are not parallel. Let the straight line b contain points A and C, that is, b = AC, and let the system

of equations of this line be

{bl X9 +9by Xogy+2bs Xg2+9bs =0,
y=0.
Since A, C € b, we have

{bl +2 b4 = 0,
bs x5 98.88 +3 by = 0,
that is,

by = —by.
So we can rewrite the system of equations of line b as

{bl = b3 X9 98.88,

(bg X 9 98.88) X9 T +9bg Xoz—9 (bg X9 98.88) =0,
y=0.
These two distinct straight lines g and b have a common point A. We are looking for the plane a

containing lines a and b as the set of points (z, y, z) € E3W, satisfying the equation

C1 X9 T +gCy XayY+oc3 Xgz+gcq =0.

We get the system
c1 X21l+42c2 X20+2c3 X20+2c4 =0,
C1 X20+2 Cy X9 99.99 +9C3 Xo 0+2 Cq = 0,
Cc1 ><20+2 Cy X9 0+2 Cc3 X9 98.88 +9cCq4 = 0,
and thus

C1 = Cy X9 9999,
Cc3 X9 98.88,
Ccqy = —Cq.

C1

We must have

Co X2 99.99 = Cc3 X9 98.88
and



|Cz| < 1, |C3| < 1.01.
All possible positive ¢y form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® = [0.99,1.98,...,98.82,99.99].
All possible positive c3 form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.88 xo W = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 $ N 98.88 xo ¥ = A.
So plane a does not exist.

2) Let us take three distinct points € E3W:

A(1,0,0), B(0,99.99,0),C(0,0,98.37).
Let the straight line o contain points A and B, that is, a = AB, and let the system of equations of

this line be

z=0.
Since A, B € a, we have

{(11 Xo T +ga3 Xay+aa3 Xg2z+gay =0,

ai +a2a4 =0,
a2 X299.99 42 a4 =0,
that is,

a] = ag X9 9999,
al = —a4.
So we can rewrite the system of equations of line a as

(a2 X9 99.99) X2 T +2a2 X2y —2a2 X299.99 =0,
z=0,
and we see that the point C'(0, 0,98.37) does not belong to line a because its coordinate z # 0.

We can make same statement also because the vectors

AB = (—1,99.99,0), AC = (—1,0,98.37)



are not parallel.

Let the straight line b contain points A and C, that is, b = AC, and let the system of equations of

this line be

by Xox +9by X9y +2b3 X92z+3bs =0,
y=0.
Since A, C € b, we have

by +2 b4 =0,
b3 x298.37 +2 b4 =0,
that is,

bl = b3 X9 9837,
b1 = —bs.
So we can rewrite the system of equations of line b as

(b3 X9 98.37) X9 T +9b3g X92z—9 (b3 X9 98.37) =0,
y=0.
These two distinct straight lines @ and b have a common point A.

We are looking for the plane a containing lines a and b as the set of points (z,y, z) € EsW»

satisfying the equation

c1 X2x +2cC2 Xay—+ac3 Xg2z+2c4 =0.

We get the system
c1 X2142c2 X2042¢3 x20+2¢c4 =0,
C1 X20+2 Co X9 99.99 +2 C3 X9 0—|—2 Cq — 0,
C1 X20+2 Co9 X9 0—|—2 C3 X9 98.37 +o2cq4 = 0,
and thus

c1 = cy X9 99.99,
c1 = c3 X9 98.37,
C4 = —C1.

We must have

C2 X2 99.99 = C3 X9 98.37
and

lea] <1, |es| < 1.01.
All possible positive ca form the set



$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5, ® = [0.99,1.98,...,98.82,99.99].
All possible positive c3 form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.37 xXo W = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 xo M 98.88 X ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

¢, = 61.92,
Cy = 0.62,

C3 = 0.63,

cy = —61.92.

This means in that this case, through two distinct straight lines having one common point, only

one plane may be made to pass.

3) Let us take the straight lines a, b € E5W,, where a has the system of equations
xz =0,
z=0,

y=0,
z2=0.

These two distinct straight lines have one common point O(0, 0, 0). Let us consider the plane

and b has the system of equations

Qa3 X9z = 0,
where a3 # 0. We have

aCa, bCa
For |az| > 1

a; = [(xa:% 0)})
where x and y are any elements € Ws. For |as| € [0.1,0.11,...,0.99],

Qg = [(:c, v,0), (z,y,+0.01),..., (z,v, i0.09)] :



where x and y are any elements € Ws. For |as| € [0.01,0.02,...,0.09],

a3 = [(z,y,0), (z,y,£0.01),..., (z,y,£0.99)],
where x and y are any elements € Ws. This means that in this case, through two distinct straight

lines having a common point, more than one plane may be made to pass.

So question b) has the negative answer: Through two straight lines having only one common

point, no plane, one plane, or more than one plane may be made to pass.

So we have proved the following:

Theorem 4.45.

In Mathematics with Observers geometry in space E3W ,, there are two distinct straight lines a and b
having only one common point A such that there is no plane a containing these lines.

Theorem 4.46.

In Mathematics with Observers geometry in space E3W,, there are two distinct straight lines a and b
having only one common point A such that there is only one plane a containing these lines.

Theorem 4.47.

In Mathematics with Observers geometry in space E3W,, there are two distinct straight lines a and b
having only one common point A such that there is more than one plane a containing these lines.

So the “line and plane theorem” of classical geometry is incorrect in Mathematics with

Observers geometry.



5 Observability and properties of points order
analysis

We have to define what does the relation “between points of a straight line” mean in

Mathematics with Observers geometry.

In the case of the so-called “simple” straight lines, for example, lines a, b, c:

ac EsW, 1z —,y=0,
be EoW, :y=0,
ce EsSW, :xz =0,
we can define the relation “between points of straight line” in the following standard way.

Take points

A,Bea:A(1,1),B(2,2).
Then we say that the points

Clr,y) €a:1<z<?2
lie between A and B. We can also say that the points

C'z,y)€a:l1<y<2
lie between A and B. These two definitions are equal in this case, and we can call say that a

point C”(z,y) € a lies between A and B if at least one of the following conditions is satisfied:

l<x<?2
or

1<y<2.
Take points

D,E €b: D(1,0), E(2,0).
Then we say that the points

F(z,y)eb:1<zx <2
lie between D and E.

Take points

I,J €c:1(0,1),J(0,2).



Then we say that the points

K(z,y)€c:1<y<2
lie between I and J.

In case we have a “not simple” straight line, for example, line

de EsWy:0.01 X9z —50.01 X9y =0,
we can define the relation “between points of straight line” in the following “not simple” way.

Take the points

L,Med:L(1,1), M(2,2).
Then we can say that a point N(z,y) € d lies between L and M if

1<z <2,
l1<y<2.
Take the points

O,P €d:0(1.06,1.89), P(2.11,2.03).
Then we can say that a point Q(z,y) € d lies between O and P if

{1.06 <x <211,

1.89 <y < 2.03.
Take the points

O',P' € d:0'(2.06,2.74), P'(2.11,2.03).
Then we can say that a point Q'(z, y) € d lies between O’ and P’ if

{2.06 <z <211,

2.03 <y<2.74.
Take the points

O",P" e€d:0"(2.06,2.74), P"(2.11,2.74).
Then we can say that a point Q" (z,y) € d lies between O” and P" if

2.06 < z < 2.11,
y = 2.74.
Take the points

0", P" cd:0"(2.06,2.74), P"(2.06,2.03).
Then we can say that a point Q"' (z, y) € d lies between O" and P" if



x = 2.06,
2.03 <y <2.74.
Take the points

R,S€d:R(1,1.99),5(1.01,1.03).
Then we can say that a point T'(z, y) lying between R and S does not exist.

Take the points

U,Ved:U(1.34,1.88),V(1.76,1.89).
Then we can say that a point W (x, y) lying between U and V does not exist.

To get one more possible logical situation, let us consider the line

e € EyW5:0.08 X9 x+420.03 Xoy—20.11 = 0.
On the interval 1 < z < 5, this line contains only the set Q of points A(z,y) € E;Ws:

Q = [A(z,y)]= [= € [1.00,1.01,...,1.99],y € [1.00,1.01,...,1.99]] U

Uz € [4.00,4.01,...,4.99],y € [-7.00,-7.01,...,—7.99]].
Take the points

X,Y €e: X(1.99,1.88),Y(4.00, —7.25).
Then we can say that a point Z(z, y) lying between X and Y does not exist.

Or take the points

X'Y'ee: X'(1.35,1.99),Y'(4.23, —7.00).
Then we can say that a point Z'(z, y) lying between X’ and Y’ does not exist.

Now we give a general definition of the relation “between points of straight line”.

First of all, we define the “closed interval” [u, v]; u, v € W, as the set of all elements

w € W, satisfying the inequalities u < w < vifu <vorv < w < wuifv < u.
If from [u, v] we remove the end points u, v, then we get the so-called “open interval” (u, v).
Definition 5.1.

Suppose we have a straight line a € E2W,, and three distinct points

A(mla y1)7 B(xZa y2)1 C($3, y3) € a.



We say that a point C lies between points A, B if one of the following conditions is satisfied:

1)
{wg - (ml,xQ),
y3 € (y1,92);
2)
{331 =Ty = I3,
Y3 € (y1,92);
3)
{.’133 - (:I:l,x2),
Y1 = Y2 = ys.
Definition 5.2.

Suppose we have a straight line a € E3W,, and three distinct points

A("Bh Y1, 21)7 B(w27 Y2, 22)7 0(2133, Y3, 23) € a.
We say that a point C lies between points A, B if one of the following conditions is satisfied:

1)

T3 € (xl,l‘z),

Y3 € (Y1,92)-

z3 € (z1,22);
2)

1 =T =1I3,

Y3 € (y1,¥2),

Z3 € (Zl,ZQ);
3)

T3 € (331,:122),

Y1 = Y2 = Y3,

z3 € (21, 22);
4)

1 = Ty = T3,

Y1 =Y2 =Yys,
z3 € (21, 22);



5)

T3 € (131,%2),
ys € (y1,92),
21 = 22 = 23,

6)
L1 — T2 — I3,
Y3 € (ylay2))
21 = 22 = 23;
7)

z3 € (x1,29),
Y1 = Y2 = Y3,
zZ]1 = 29 = Z3.

5.1 First property of points order
Let A, B, C be points of a straight line with B lying between A and C.
Question: Is B also lying between C and A?

In Mathematics with Observers geometry, we have the positive answer to this question

because the definition of “between” is symmetric with respect to points A and C.

This means that we have the following:

Theorem 5.3.

In Mathematics with Observers geometry in plane E5W,,, in any straight line a having at least
three distinct points A, B, C such that B lies between A and C, point B also lies between C and A.
Theorem 5.4.

In Mathematics with Observers geometry in space EsW,,, in any straight line a having at least

three distinct points A, B, C such that B lies between A and C, point B also lies between C and A.

5.2 Second property of points order

Let us consider two distinct points in EoW,, or E3W,, lying in the same straight line:

A(mlayl)) C(xZ)yQ) cac E2Wn
or

A(z1,y1,21),C(x2,y2,22) € b € EsW,.



Question: Does there exist at least one point B € a or B € b lying between A and C and at

least one point D such that Clies between A and D?
1) Let us take the straight line a € EsW5 with equation

10 X9 x —>5 Yy = 0
and two points A, C' € a with coordinates A4(0.99,9.9), C(1, 10). In this case, no point

B € a lying between A and C exists. So in this case the answer to the question is negative.

1’) Let us take the straight line b € E3W5 with system of equations

10 Xo & —oY = 0,
z =0,
and two points A, C € b with coordinates A(0.99,9.9,0), C(1,10,0). In this case, no point

B € b lying between A and C exists. So in this case the answer to the question is negative.

2) Let us take the straight line a € Es W, with equation

99.99 x5 & —5 y = 0
and two points A, C' € a with coordinates A (0, 0), C(1,99.99). In this case, no point D € a

such that C lies between A and D exists. So in this case the answer to the question is negative.

2’) Let us take the straight line b € E3W5 with system of equations

99.99 xoz —y =0,
oo
and two points A, C' € b with coordinates A(0, 0,0), C(1,99.99,0). In this case, no point
D € b such that C lies between A and D exists. So in this case the answer to the question is

negative.

3) Let us take the straight line a € F2W3> with equation

z—2y=0
and two points A, C' € a with coordinates A(0,0), C(1,1). If we take two points B, D € a
with coordinates B(0.5,0.5), D(1.5,1.5), then we get point B € a lying between A and C
and point D such that C lies between A and D. So in this case the answer to the question is

positive.

3’) Let us take the straight line b € E3W3 with system of equations



z—2y=0,
{z =0,
and two points A, C € b with coordinates A(0,0,0), C(1,1,0). If we take two points
B, D € b with coordinates B(0.5,0.5,0), D(1.5,1.5,0), then we get point B € b lying
between A and C and point D € b such that C lies between A and D. So in this case the answer

to the question is positive.

So we have proved the following:

Theorem 5.5.

In Mathematics with Observers geometry in plane EsW ,, there are a straight line a and two
distinct points A, C' € a such that there is no point B € a lying between A and C.

Theorem 5.6.

In Mathematics with Observers geometry in plane E5W,,, there are a straight line a and two
distinct points A, C' € a such that there is at least one point B € a lying between A and C.
Theorem 5.7.

In Mathematics with Observers geometry in plane E5W.,, there are a straight line a and two distinct
points A, C' € a such that there is no point D € a such that C lies between A and D.

Theorem 5.8.

In Mathematics with Observers geometry in plane EsW ,, there are a straight line a and two
distinct points A, C' € a such that there is at least one point D € a such that C lies between A and
D

Theorem 5.9.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and two
distinct points A, C' € a such that there is no point B € a lying between A and C.

Theorem 5.10.

In Mathematics with Observers geometry in space EsW ,, there are a straight line a and two
distinct points A, C' € a such that there is at least one point B € a lying between A and C.
Theorem 5.11.

In Mathematics with Observers geometry in space E3W ,, there are a straight line a and two
distinct points A, C' € a such that there is no point D € a such that C lies between A and D.
Theorem 5.12.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and two
distinct points A, C' € a such that there is at least one point D € a such that C lies between A and
D

5.3 Third property of points order

Let us consider three distinct points € EsW,, or € E3W,, lying in the same straight line:

A(z1,91), B(z2,92), C(23,y3) € a € EsW,



or

A(z1,y1,21), B(T2, Y2, 22), C(23, Y3, 23) € b € E3W,.
Question: Is there one and only one of these points that lies between the other two?

1) Let us take the straight line a € Es W, with equation

a€ EsWs:0.01 x9x —,0.01 xXoy=20
and three distinct points A, B, C' € a with coordinates A(0.96,0.96), B(0.96,0.97),
C(0.97,0.97). In this case, none of these points lies between the other two.

So in this case the answer to the question is negative.

1’) Let us take the straight line b € E3W5 with system of equations

0.01 X9z —, 0.01 X9y =0,
{z =0,

and three distinct points A, B, C' € b with coordinates A(0.96,0.96,0), B(0.96,0.97,0),

C(0.97,0.97,0). In this case, none of these points lies between the other two.

So in this case the answer to this question is negative.

2) Let us take the straight line a € EsW5 with equation

0.08 X9 x4+90.03 xoy—20.11=0
and three distinct points A, B, C' € a with coordinates A(1.99, 1.88), B(1.99, 1.56),
C(4.00, —7.25). Direct calculations show that on the interval 1 < z < 5, this line contains
only the set Q of points A(z,y) € E;Ws:

Q = [A(z,y)]= [z € [1.00,1.01,...,1.99],y € [1.00,1.01,...,1.99]] U

Uz € [4.00,4.01,...,4.99],y € [-7.00,—7.01,...,—7.99]].
Then we can say that none of these points lies between the other two.

2’) Let us take the straight line b € E3W5 with system of equations

0.08 X2 +20.03 X2y —20.11 =0,
{z =0,

and three distinct points A, B, C' € b with coordinates A(1.99, 1.88,0), B(1.99,1.56,0),

C(4.00,—7.25,0). Then we can say that none of these points lies between the other two.



3) Let us take the straight line a € Es W with equation

T —oY= 0
and three points A, B, C' € a with coordinates A(0,0), B(0.5,0.5), C(1,1). We get that
point B € a lies between A and C, and B is only one of these points that lies between the

other two. So in this case the answer to the question is positive.

3’) Let us take the straight line b € EoW5 with system of equations

T —oY= 0,
z=0,
and three points A, B, C € b with coordinates A(0, 0,0), B(0.5,0.5,0), C(1,1,0). We get

that point B € b lies between A and C, and B is only one of these points that lies between the

other two. So in this case the answer to the question is positive.

So we have proved the following:

Theorem 5.13.

In Mathematics with Observers geometry in plane E;W,,, there are a straight line a and three
distinct points A, B, C € a such that none of these points lies between the other two.

Theorem 5.14.

In Mathematics with Observers geometry in plane E;W,,, there are a straight line a and three
distinct points A, B, C' € a such that is one and only one of these points that lies between the other
two.

Theorem 5.15.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and three
distinct points A, B, C' € a such that none of these points lies between the other two.

Theorem 5.16.

In Mathematics with Observers geometry in space E3W,,, there are a straight line a and three
distinct points A, B, C' € a such that there is one and only one of these points that lies between the
other two.

5.4 Fourth property of points order

Let us consider four distinct points in EoW,, or E3W,, lying in the same straight line:

A(zlayl)a B(m27y2)7 C’(cc3,y3),D(a:4,y4) cac E2Wn
or

A(z1,y1,21), B(z2, y2, 22), C(23, Y3, 23), D(24, Y4, 24) € b € EsW,,.



Question: Is it always possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between
B and D?

1) Let us take the straight line a € Es W, with equation

ac E2W2 : 0.01 X9 —p 0.01 Xo Yy = 0
and four distinct points A, B, C, D € a with coordinates A(0.96,0.96), B(0.96,0.97),
€(0.97,0.97), D(0.97,0.98).

In this case, it is not possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between

B and D. So in this case the answer to the question is negative.

1’) Let us take the straight line b € E3W, with system of equations

0.01 X3 % —p, 0.01 x5 4y =0,
{z =0,

and four distinct points A, B, C, D € b with coordinates A(0.96,0.96,0), B(0.96,0.97,0),

€(0.97,0.97,0), D(0.97, 0.98, 0).

In this case, it is not possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between

B and D. So in this case the answer to the question is negative.
2) Let us take the straight line a € EsW with equation

T —oY= 0
and four points 4, B, C, D € a with coordinates A(0,0), B(0.5,0.5), C(1,1), D(1.5,1.5).
These four points are already arranged so that B lies between A and C and also between A and
D and, moreover, so that C lies between A and D and also between B and D. So in this case the

answer to the question is positive.
2’) Let us take the straight line b € E3W5 with system of equations
r—2Y= 01
z=0,
and four points A, B, C, D € b with coordinates A(0,0,0), B(0.5,0.5,0), C(1,1,0),
D(1.5,1.5,0). These four points are already arranged so that B lies between A and C and also



between A and D and, moreover, so that C lies between A and D and also between B and D. So

in this case the answer to the question is positive.

So we have proved the following:

Theorem 5.17.

In Mathematics with Observers geometry in plane EsW.,,, there are a straight line a and four
distinct points A, B, C, D € a such that it is impossible to arrange these four points so that B will
lie between A and C and also between A and D and, moreover, so that C will lie between A and D and
also between B and D.

Theorem 5.18.

In Mathematics with Observers geometry in plane E5W,,, there are a straight line a and four
distinct points A, B, C', D € a such that it is possible to arrange these four points so that B will lie
between A and C and also between A and D and, moreover, so that C will lie between A and D and
also between B and D.

Theorem 5.19.

In Mathematics with Observers geometry in space E3W,,, there are a straight line a and four
distinct points A, B, C, D € a such that it is impossible to arrange these four points so that B will
lie between A and C and also between A and D and, moreover, so that C will lie between A and D and
also between B and D.

Theorem 5.20.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and four
distinct points A, B, C, D € a such that it is possible to arrange these four points so that B will lie
between A and C and also between A and D and, moreover, so that C will lie between A and D and
also between B and D.

5.5 Fifth property of points order

Let us consider three distinct points € EsW,, not lying in the same straight line:

A(xla y1)7 B(ﬁg, y2)? C(wi%? y3)'
Let a € EsW, be a straight line not passing through any of the points A, B, C.

Question: Is the following statement correct or not in Mathematics with Observers geometry:
If line a passes through a point of the segment A B, then it also passes through either a point
of the segment BC' or a point of the segment AC"?

1) Let us consider three distinct points € EoW,,:

A(0,0), B(0,3),C(1,3).

These points do not lie in the same straight line: Points A, B lie in the straight line



xz =0,
points A, C lie in the straight line

3Xpe—py=0,
and points B, C lie in the straight line

Yy—3d=0.
Let us take the straight line o with equation

y—n1l=0.
It passes through a point D(0, 1) of the segment AB, has no common points with the
segment BC', and has no common points with the segment AC'. So in this case the answer to

the question is negative.

2) Let’s consider three distinct points € EoW,,:

A(0,0), B(0,6),C(2,6).
These points do not lie in the same straight line: Points A, B lie in the straight line

x =0,
points A, C lie in the straight line

3Xpe—py=0,
and points B, C lie in the straight line

y—n6=0.
Let us take the straight line a with equation

Yy—n3d=0.
It passes through a point D(0, 3) of the segment A B, has no common points with the
segment BC, and passes through a point F'(1, 3) of the segment AC. So in this case the

answer to the question is positive.

So we have proved the following:

Theorem 5.21.

In Mathematics with Observers geometry in plane EsW ,, there are three distinct points A, B, C not
lying in the same straight line and a straight line a not passing through any of these points such
that line a passes through a point of the segment A B and does not pass through either a point of
the segment BC or a point of the segment AC.

Theorem 5.22.



In Mathematics with Observers geometry in plane EsW ,,, there are three distinct points A, B, C not
lying in the same straight line and a straight line a not passing through any of these points such
that line a passes through a point of the segment A B and passes through either a point of the
segment BC or a point of the segment AC.

5.6 Number of points theorem
Classical geometry states that

“Between any two points of a straight line, there always exists an unlimited number of

points.”

Question: Is the following statement correct or not in Mathematics with Observers geometry:

Between any two points of a straight line, there always exists an unlimited number of points?
1) Let us take the straight line a € Es W, with equation

99.99 Xo @ —9 Y = 0
and two points A, C' € a with coordinates A(0.62,61.92), C(0.63,62.91). In this case,
there is no point B € a such that B lies between A and C. So in this case the answer to the

question is negative.

1’) Let us take the straight line a € E3W, with equation

99.99 XoX —2Y = 0,
s
and two points A, C € a with coordinates A(0.62,61.92,0), C(0.63,62.91,0). In this case,
there is no point B € a such that B lies between A and C. So in this case the answer to the

question is negative.

2) Let us take any straight lines a € E;W5y and b € E3W,. From the point of view of Wy-
observer, the space E5W, contains no more than 4 X 108 points, and from the point of
view of W3-observer, the space E3W5 contains no more than 8 x ;5 102 points. So in this

case the answer to the question is negative.

3) The set W, has exactly 2 x,, 102*»" — 1 elements from the W,,-observer point of view,
m>2X,n-+, 1.



The set E5W,, has exactly 4 X, 109 — 1 points from the W,,,-observer point of view,
m>2X,2XxX,n+,1.

The set E3W,, has exactly 8 X, 10%%»" — 1 points from the W,,,-observer point of view,
m>2X,3xX,n+,1.

So we have proved the following:

Theorem 5.23.

In Mathematics with Observers geometry in plane E5W.,,, there are a straight line a and two
distinct points A, B € a such that there are no points between A and B.

Theorem 5.24.

In Mathematics with Observers geometry in space E3W,, there are a straight line a and two
distinct points A, B € a such that there are no points between A and B.

Theorem 5.25.

In Mathematics with Observers geometry the plane EoW,, (and so on any straight line in this plane)
contains no more than 4 X, 104*=" — 1 points from the W,,-observer point of view,
m>2X,2X,n+,1.

Theorem 5.26.

In Mathematics with Observers geometry the space EsW,, (and so on any straight line in this
space) contains no more than 4 x,, 104*7™ — 1 points from the W, -observer point of view,
m>2xX,2X,n-+, 1

5.7 Line and regions theorem
Classical geometry states the following:

“Every straight line o that lies in a plane a divides the remaining points of this plane into
two regions having the following properties: Every point A of the one region determines
for each point B of the other region a segment AB containing a point of the straight line a.
On the other hand, any two points A, A’ of the same region determine a segment AA'

containing no point of a.”
Let us first consider the statement

“Every straight line o that lies in a plane a divides the remaining points of this plane into

two regions.”

Question: Is this statement correct in Mathematics with Observers?



Let us take the straight line a € EsW,:

a:a1 X, T+oas X, y+2a3=0
forall a1, as,as,a1 X, &, a3 Xp Y, a1 Xp T+, a2 X, y € Wy, such that (aq,as) # (0,0)
and define the following regions R{, RS C EoW,,:
RS:

a1 Xp T+, a9 Xy Y+, a3 € W,
a1 Xn & +n a2 Xny+na3>0;

{a'l Xn$+n as Xny+n as S Wna
a1 Xn T +na2 Xny+naz <O0.
Consider the set R* C EyW,:

R*=R{UaURj.
Question: R* = ExW,, or R} = EsW,, \ R* # A?

Here sign “\” means the operation “minus” for sets (for sets A and B, A \ B is the set of all

elements of A not belonging to B), and A means the empty set.

Let’s consider several examples.

Example 1.
Let

a:y=0.
Then

R :y>0,

R :y<O0,

¢ — A

This means that we have the positive answer in this case.
Example 2.
Let

a:3x,z=0.



Then

R} :3x,z>0,
RS :3 xpx <0,
RS = (z,y),x € [—99...9.99...9,-33...3.33...34]U

U[33...3.33...34,99...9.99...9],y € W,,.
This means that we have the negative answer in this case.

Example 3.
Let

@:99...999...9%x,4+,99...9.99...9x,y=0.
We get that

99...9.99...9%x,2,99...999...9x,yec W,
if and only if the points (z,y) € a satisfy the system

Q:

-1 <z <1,
-1<y<L
The set Q C EsW, is the square with center (0,0) and side 2. Then

RY:

99...9.99...9%x,+,99...999...9x,ye W,,

99...999...9%x,2+,99...9.99...9x,y>0,
and
R3:

{99...9.99...9 XnT+,99...9.99...9x,yec W,,

99...999... 9%, 24+,99...9.99...9 x,y<O.

Note that
R*=R'UaURSC Q,

but

Q\ R" #A,

because, for example,



(w,y) = (0.99...9,0.99...9) ¢ R*.
This means that

RS = E;W, \ R* = (B;W, \ Q) U (Q\ RY).

So we have the negative answer in this case.

Example 4.
Let
a:yYy—099...9.99...9=0.
Then
R} :y—,99...9.99...9>0.
So
(1l: A,
(zl: E2Wn \ a,
3= A.

This means that we have the negative answer in this case.

So we have proved the following:

Theorem 5.27.
In Observer’s geometry in the plane E;3W,, there is a straight line a transforming the remaining
points of this plane into the region R or RS, where
a:a; X, +20a3 Xy +2a3=0;
RS:
a1 Xpn T +n a2 Xn Y +naz € Wh,
a1 Xpn & 44, a2 ><n?;""nafii >O;
Ra.
5
a1 Xn T +n a2 Xpn Y +nasz € Wy,
Theorem 5.28.
In Observer’s geometry in the plane E3W,,, there is a straight line a dividing the remaining points
of this plane into two regions R{ and RS, where
a:a; X, +20a3 Xy +2a3=0;
RS:
a1 Xn T +n a2 Xn Y +nasz € Wy,
a1 Xpn & 44, a2 ><ny‘}_naﬂ >0;



{a'l Xn & +p a2 Xpn y+n as € Wna
a1 Xn T +na2 Xny+naz <O0.
Theorem 5.29.
In Observer’s geometry in the plane EoW,,, there is a straight line a dividing the remaining points
of this plane into three regions R, Rj, and R3, where

a:ar Xnx+ray Xpy+oa3=0;

Ra .
1
{al Xn T 4nas Xny—+nag € Wy,
a1 Xp & 45 a2 Xp Y +paz > 0;
R3:
{al Xn T 4nas Xny—+nag € Wy,
a1 Xp & +5 a2 Xy Y +paz <0
$=EW,\ (R{UaURj).
Questions:
a) Is the following statement correct in Mathematics with Observers geometry:

For R = A, every point A of the one region determines with each point B of the other

region a segment AB containing a point of the straight line a?

b) Is the following statement correct in Mathematics with Observers geometry:
For R = A, any two points A, A’ of the same region determine a segment AA’ containing

no point of a?
Let us start with question a).

1) Let a plane o € E3W3 have the equation

z=0.
So we are in F2Ws. Let the straight line o have the equation

Y= _17
and let R{, R be two regions of plane a:
(ll: [("an)} y (xay) S E2W2,y > —1,

g: [(ma y)} ) (l‘, y) S E2W27y < _17
where x is any element € W5. So

a=R{UaURj.
Let us take two points



A(99.99,0) € RY, B(0,—98.88) € Rj.
We looking for a straight line b as the set of points (, y) satisfying the equation

ay; Xa @ +2a3 Xo2y+2a3=0
and containing points A, B. We have

{al X9 (9999) “+9 a9 X9 (O) +9 a3 = 0,
ai Xo (0) —9 a9 X2 (9888) +9a3 = 0.
We must have

|a1| S 1, |a2| S 1.01.
This means that

a1 X2 (99.99) = —as x5 (98.88).
All possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x, & =[0.99,1.98,...,98.82,99.99).
All possible negative as form the set

¥ =[-0.01,-0.02,...,—0.99, —1.00, —1.01],
and we get

—98.88 x9 ¥ = [0.98, 1.96,...,97.74,98.88, 99.86]
Direct calculations show that

99.99 x5 ® N —98.88 xo ¥ = A.
So the straight line b containing the points A(99.99,0), B(0, —98.88) does not exist, that is,

a segment AB does not exist. So in this case the answer to the question is negative.

2) Let us again take the plane a € E3W, with equation

z=0.
So we are again in EsW,. Let again the equation of straight line a be

Y= _17
and let the regions R{ and R of plane a be



Cll: [(xay)}a(xay) € E2W27y > _1’

Czl: [(ZL’, y)} ) (.’E, y) € E2W27y < _1)
where x is any element € Ws. So

a= RiUaUR3.
Let us take other two points

A(99.99,0), B(0,—98.37).
Again, we look for a straight line b as the set of points (z, y) satisfying the equation

a1 X2 x +2a2 Xoay+2a3 =20
and containing points A, B. We have

{al X9 (99.99) +9 a9 X9 (0) +2a3 =0,
ai X9 (0) —9 Qg X9 (9837) +o a3 = 0.
We must have

|a1| < 1, |a2| < 1.01.
This means that

ai X9 (9999) = —a9 X9 (9837)
Again, all possible positive a; form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® = [0.99,1.98,...,98.82,99.99].
All possible negative as form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

—98.37 xo ¥ = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 xo ® N —98.37 xo ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a; =0.62; a9 = —0.63; a3 = —61.92.
So there is only one straight line b containing points 4(99.99,0) and B(0, —98.37), that is, a

segment AB exists. Let us now see whether line a intersects the segment AB or not? We get



the system of equations

{0.62 Xo & —90.63 X9y —261.92 =0,

y+21=0.
We have

0.62 x9 x = 61.29,
but direct calculation shows that

0.62 x5 98.89 = 61.24
and

0.62 x5 98.90 = 61.30.
This means that

anNb=A,
that is, the segment AB does not contain a point of the straight line a. So in this case the

answer to the question is negative.

3) Let us again take the plane a € E3W5 with equation

z=0.
So we are again in EsW,. Let now the straight line a equation be

y = —0.33,
and let two regions R, R of plane a be

Ri= [(z,y)], (z,y) € EaWa,y > —0.33,
5= [(z,9)], (z,y) € EaWs,y < —0.33,

where x is any element of W5. So

a=R{UaURj.
Let us take two points

A(99.99,0), B(0, —98.37).
Again, we look for a straight line b as the set of points (z, y) satisfying the equation

a; Xo & +2a3 Xoy+sa3 =0
and containing points A, B. We have



{al X9 (9999) +92 ag X9 (0) +92a3 = 0,
ai X2 (0) —20a2 X2 (98.37) +92a3 = 0.
We must have

|a1| <1, \a2| < 1.01.
This means that

ai X9 (9999) = —a9 X9 (9837)
Again, all possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x, & =[0.99,1.98,...,98.82,99.99].
All possible negative as form the set

¥ =[-0.01,-0.02,...,—0.99,—1.00, —1.01],
and we get

—98.37 X9 ¥ = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 x9 ® N —98.37 xo ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a1 =0.62; ay=-0.63; a3=—61.92.
So there is only one straight line b containing points 4(99.99, 0), B(0, —98.37), that is, a
segment AB exists. Let us now see whether line a intersects the segment AB or not. We get

the system of equations

{0.62 Xox —90.63 Xoy—261.92 =0,
y+20.33 =0.
We have

0.62 x2 x = 61.74,
and direct calculations show



0.62 x5 99.60= 61.74,
0.62 x299.61= 61.74,
0.62 x5 99.62= 61.74,
0.62 x5 99.63= 61.74,
0.62 x299.64= 61.74,
0.62 x5 99.65= 61.74,
0.62 x5 99.66= 61.74,
0.62 x299.67= 61.74,
0.62 x5 99.68= 61.74,
0.62 x5 99.69= 61.74.
This means that

anb=[(99.60,—0.33),(99.61,—0.33),...,(99.69, —0.33)],
that is, the segment AB contains ten points of the straight line a. So in this case the answer to

the question is positive.

4) Let us again take the plane a € E3W, with equation

z=0.
So we are again in FsW,. Let again the straight line o equation be

Y= _17
and let two regions R{, R§ of plane a be

(11«: [(:E)y)}?(xay) S E2W2,y > _17

(21: [(ma y)} ) (1,‘, y) S E2W27y < _17
where x is any element of Ws. So

a=R{UaURj;.
Let us take other two points

A(0,1), B(0,—2).
Again, we look for a straight line b as the set of points (z, y) satisfying the equation

a; Xo & +2a3 Xo2y+oa3 =0
and containing points A, B. We have

{(1,1 X9 (0) +9ag X9 (1) +9 a3 = 0,
a1 X2 (0) —2 a2 X2 (2) +2a3 =0,
that is,



{ag +9 a3 =0,
—a2 X22+2a3 =0,
that is,

{(12 = 07
az = 0,

ai ><233=0.

and line b has the equation

So we have three distinct straight lines:

1. For each aji such that

1 < |a1| < 99.99,
we get a straight line ¢ as the set of points (0, y) with any y € W5.

2. For each ai such that

0.1 < |a1| <0.99,
we get a straight line d with the set of points

[(0,y); (£0.01, y); (£0.02,3); . . . ; (£0.09, )]
with all y € W.

3. For each a; such that

0 < |az] <0.09,
we get a straight line e as the set of points

[(0, Y); (£0.01, y); (£0.02,y); . . .; (£0.09,y); . . .; (£0.99, y)}
with all y € W3, and we have

cCdCe.
If we take
al = 1,
then we get
b=c,

and line b has the equation



In this case,

anb=(0,-1),
that is, the segment AB exists and contains one point of the straight line a. So in this case

the answer to the question is positive.

So we have proved the following:

Theorem 5.30.

In Observer's geometry in the plane EoW,, there are a straight line a with RS = A and point A of
the region R$ and point B of the region R§ such that the segment AB contains no point of the
straight line a.

Theorem 5.31.

In Observer’s geometry in the plane E3W,, there are a straight line a with RS = A and point A of
the region R$ and point B of the region R such that the segment AB contains exactly one point
of the straight line a.

Theorem 5.32.

In Observer's geometry in the plane EoW,,, there are a straight line a with RS = A and point A of

the region R$ and point B of the region R such that the segment AB contains more than one
point of the straight line a.

Now let us go to question b).

1) Let the plane a € E3W, have the equation

z=0.
So we are in FoWs. Let the equation of a straight line a € E;W5 be

y=0,
and two regions R{, RS of plane a be

R(11: [(xay)}a (:B,y) € EaWs,y > 0,

Rg: [(xay)}a (CE,y) € E2W27y <0,
where x is any element € Wj. So

a=R{UaURj.
Let us take two points A, A’ € Ry:

A(0.09, 0.19),A'(0.21,0.43) € R;.
We get a straight line b as the set of points (z, y) satisfying the equation

2X23}—2y+20.0120



and containing points A, A’. The segment AA’ contains the points

(0.09,0.19), (0.10,0.21), ..., (0.20,0.41), (0.21,0.43)]
but contains no point of a and region R$. So in this case the answer to the question is

positive.

We have another straight line c as the set of points (, y) satisfying the equation

0.01 Xo T +2 0.01 Xo Yy = 0
and containing points A, A’. The segment AA’ contains the points

[(0.09,0), (0.09, 40.01),. ..., (0.09, +0.99), (0.10,0), (0.10, +0.01), . ..., (0.10, +0.99), . ..

...,(0.21,0),(0.21,40.01),...,(0.21, :|:0.99)}
and contains many points of line o and regions R, R5. So in this case the answer to the

question is negative.

2) Let the plane a € E3W5 have the equation

z=0.
So we are in E5W,. Let the equation of a straight line a be

y=1,
and let two regions R{, R of plane a be
R(11: [(may)}a ($7y) € E2W2>y > 1,

Rg: [(m’yﬂa (w7y) € E2W2>y < 17
where x is any element € Wj. So

a=R{UaURj
Let’s take two points

A(99.99,0), B(0, —98.88) € R,.
We look for a straight line b as the set of points (z, y) satisfying the equation

a; Xo & +2a3 Xo2y+oa3 =0
and containing points A, B. We have

{al X9 (99.99) “+9 a9 X9 (0) +2a3 =0,
a] X9 (0) —9 Q9 X2 (9888) +92 a3 = 0.
We must have



lai] <1, |as| < 1.01.
This means that

aj X9 (9999) = —Qa9 X9 (9888)
All possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x, ® = [0.99,1.98,...,98.82,99.99].
All possible negative as form the set

¥ = [-0.01,-0.02,...,—0.99, —1.00, —1.01],
and we get

—98.88 x9 ¥ = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 x5 & N —98.88 x5 ¥ — A.
So a straight line b containing the points A4(99.99,0), B(0, —98.88) does not exist, that is,

the segment A B does not exist. So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.33.
In Observer’s geometry in the plane E; W, there are a straight line a with RS = A and points A,

A’ of the region R{ such that the segment A A’ contains no point of the straight line a.
Theorem 5.34.

In Observer’s geometry in the plane ExW,, there are a straight line a with R§ = A and points A,
A’ of the region RY such that the segment AA’ contains exactly one point of the straight line a.
Theorem 5.35.

In Observer’s geometry in the plane E; Wy, there are a straight line a with RS = A and points A,
A’ of the region R such that the segment AA’ contains more than one point of the straight line
a.

5.8 Polygon and regions theorem

Classical geometry calls a system of segments AB, BC,CD, ..., KL without self-
intersections (except points A, B, ..., L) a broken line joining A with L or shortly a broken
line ABCDE...KL.]If the point A coincides with L, then the broken line is called a polygon.
The segments AB, BC,CD, ..., KA are called the sides of the polygon, and the points



A,B,C,D,..., K are called the vertices. Polygons having 3,4, 5, ..., n vertices are called,

respectively, triangles, quadrangles, pentagons, ..., n-gons.
Classical geometry states:

“Every polygon whose vertices all lie in a plane a divides the points of this plane not
belonging to the broken line into two regions, an interior and an exterior, having the

following properties:

a) If A is a point of the interior region (interior point) and B is a point of the
exterior region (exterior point), then any broken line joining A and B must have at least
one common point with the polygon.

b) If, on the other hand, A, A’ are two points of the interior and B, B’ are two
points of the exterior region, then there are always a broken line joining A with A’ and a
broken line joining B with B’ without a common point with the polygon.

c) There exist in the plane a that lie entirely outside the given polygon, but

there are no straight lines that lie entirely within it”.
Question: Are statements a), b), and c) correct in Mathematics with Observers geometry?

First, let us consider the statement “Every polygon whose vertices all lie in a plane a divides
the points of this plane not belonging to the broken line into two regions, an interior and an

exterior” and check it.

1) Let’s consider the polygon in EsW,, with four vertices

A(2, 1), B(—2, 1), C(—2, —1), D(2, —1)
and four sides, segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y—p1=0,
b:x+,2=0,
c:y+,1=0,
d:x—,2=0.

The interior region R™ of this polygon is the set of points (x,y) € EoW,, satisfying the

system



Y~=n 1< Oa
x+n2>0,
y+nl>0,
r—p2<0.

The exterior region R®™%*" of this polygon is the set of points

(z,y) € E2Wy \ (R™ UABUBC UCDU DA),
and we see that in this case,

Rinter 7£ A,
Rexter 7& A

2) Let us consider the polygon in E2W32 with four vertices

A(99.99, 99.99), B(—99.99, 99.99), C(—99.99, —99.99), D(99.99, —99.99)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y—999.99 =0,
b:x+299.99 =0,
c:Yy—+299.99 =0,

d:x—299.99 = 0.
The interior region R of this polygon is the set of points (z,y) € E2W, satisfying the
system

Y —299.99 < 0,
T +299.99 > 0,
Y+ 99.99 > 0,

x —299.99 < 0.
The exterior region R®™" of this polygon is the set of points

(z,y) € EaW3 \ (R™" UABUBC UCD U DA),
and we see that

E;W; = (R™ U ABUBCUCD U DA),
that is,

Rexter — A



This means that this polygon with vertices in a plane a does not divide the points of this plane
not belonging to the broken line into two regions, an interior and an exterior, that is, in this

case, we have only one region, the interior region.

3) Let us consider the polygon € EyW, with four vertices

A(0.00, 0.00), B(0.00, 9.00), C(0.0l, 9.00), D(0.0l, 0.00)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:xz =0,

b:y—29.00 =0,

c:x—50.01 =0,

d:y=0.
The interior region R™" of this polygon is the set of points (z,y) € E;W, satisfying the
system

x>0,
y—29.00 <0,
x —20.01 <0,
y > 0.
The exterior region R®™" of this polygon is the set of points

(z,y) € E;Ws \ (R™ UABUBC UCD U DA),
and we see that

Rinter_ A
- )
EyWe= R U ABUBC UCDU DA.
This means that this polygon with vertices in a plane a does not divide the points of this plane
not belonging to the broken line into two regions, an interior and an exterior, that is, in this

case, we have only one region, the exterior region.

So we have proved the following:

Theorem 5.36.

In Mathematics with Observers geometry in the plane EoW,, there is a polygon with all vertices in
a plane a that divides the points of this plane not belonging to the broken line into two regions, an
interior and an exterior.



Theorem 5.37.

In Mathematics with Observers geometry in the plane EsW ,, there is a polygon with all vertices in
a plane a that pushes the points of this plane not belonging to the broken line into one region, an
interior.

Theorem 5.38.

In Mathematics with Observers geometry in the plane EsW ,, there is a polygon with all vertices in
a plane a that pushes the points of this plane not belonging to the broken line into one region, an
exterior.

Let us go now to the general case of two regions and questions: Are statements a), b), and ¢)

correct in Mathematics with Observers geometry?
Let us start with question a).

1) Let us consider the polygon € E,W,, with four vertices

A(2,1),B(~2,1),C(~2,-1),D(2, -1)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

1y —n1=0,
x4+, 2=0,
ry+,1=0,
d:x—,2=0.
The interior region R™ of this polygon is the set of points (z,y) € EoW,, satisfying the

o o Q

system

y—pnl<O,
x+,2>0,
Yy+nl>0,
r—p2<0.

The exterior region R®™*" of this polygon is the set of points

(z,y) € BaW,, \ (R™" UABUBC UCDU DA).
Let us take the points E(0, 0) of the interior region (interior point) and F'(3,9) of the

exterior region (exterior point), and take the straight line e with equation

e:3xX,x—py=0,
and on this line, we have the segment EF' with



E Fece

and
e N AB= A,
eNBC=A,
eNCD= A,
eNDA= A,

that is, line e has no common points with the polygon, that is, the segment EF' has no

common points with the polygon. So in this case the answer to the question is negative.

2) Let us again consider the polygon € E,W,, with four vertices

A(2,1), B(=2,1),C(-2,—1),D(2, -1)
and four sides, the segments

AB,BC,CD,DA

lying on the corresponding straight lines a, b, ¢, d with equations

a:y—p1=0,
b:zx+,2=0,
c:y+n,1=0,
d:x—,2=0.

Let us take the points E(0, 0) of the interior region (interior point) and F'(3, 6) of the

exterior region (exterior point) and take the straight line e with equation

e:2x,x—py=0.

We have
E,Fece

and
eN AB= (0.5, 1),
eNBC= A,
eNCD= (—0.5, —1),
eNDA= A,

and so

EFNAB=(05,1),
that is, the segment EF' has one common point with the polygon. So in this case the answer

to the question is positive.



So we have proved the following:

Theorem 5.39.

In Mathematics with Observers geometry in the plane EoW,,, there are a polygon, a point A of the
interior region (interior point), a point B of the exterior region (exterior point), and a broken line
joining A and B such that these line and polygon have no common point.

Theorem 5.40.

In Mathematics with Observers geometry in the plane EoW,,, there are a polygon, a point A of the
interior region (interior point), a point B of the exterior region (exterior point), and a broken line
joining A and B such that these line and polygon have at least one common point.

Let us go to question b).

1) Let us consider the polygon € E,W,, with four vertices

A(2,-1), B(=2,—1),C(-2,0), D(2,0)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y+,1=0,
b:zx+,2=0,
c:y=0,

d:x—,2=0.

Let us take two points (for example, we take n = 2)

E(0.09,0.19), E'(O.21, 0.43)
of the exterior region (exterior points). We get a straight line e as the set of points (z, y)

satisfying the equation

2X9x —2y+20.01=0
containing points £, E’. The segment EE’ contains the points

(0.09,0.19), (0.10,0.21), ..., (0.20,0.41), (0.21, 0.43)]
and points of the exterior region, but contains no points of polygon and interior region. So in

this case the answer to the question is positive.

2) Let us consider the polygon € E>W,, with four vertices

A(2,-1), B(=2,—1),C(-2,0), D(2,0)
and four sides, the segments



AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y+,1=0,
b:z+,2=0,
c:y=0,

d:x—,2=0.

Let us take two points (for example, we take n = 2)

F(-1,-0.5), F'(l, —0.5)
of the interior region (interior points). We get a straight line f as the set of points (, y)

satisfying the equation

y+20.5=0
containing points F, F'. The segment F'F’ contains the points

[(-1,-0.5),(—0.99,—0.5),...,(0.99, —0.5), (1, —0.5)]
and points of the interior region, but contains no point of the polygon and exterior region. So

in this case answer for question is positive.

3) Let us take, for example, n = 2. Let us consider the polygon € E>W> with four vertices

A(—99.99, —98.99), B(—99.99, 98.99), C(99.99, 98.99), D(99.99, —98.99)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:xr—+299.99 =0,
b:y—298.99 =0,
c:x—299.99 =0,
d:y-+298.99 = 0.

Let us take two points

G(0,99.00), G'(0,—99.00)
of the exterior region (exterior points). We get a straight line g as the set of points (z, y)

satisfying the equation

x=0
containing points G, G'. The segment GG’ contains the points



[(0,99.00), (0,98.99), (0,98.98), ..., (0, —98.98), (0, —98.99), (0, —99.00)]
points of the exterior region, and points of the polygon and interior region. We have the same
situation not only for line g, but also for any broken line connecting points G and G'. So in

this case the answer to this question is negative.

4) Let us again take, for example, n = 2. Let us consider the polygon € EsW5 with twelve

vertices

A;1(—1.00,—-9.00), A>(—1.00,0.00), A3(0.00,0.00), A4(0.00,5.00),

A5(—1.00,5.00), Ag(—1.00,9.00), A;(1.00,9.00), Ag(1.00,5.00),

Ay(0.01,5.00), A1¢(0.01,0.00), A4;(1.00,0.00), A15(1.00, —9.00)
and twelve sides, the segments

A1A2, A2A3’ A3A4’ A4A57 A5A67 A6A77 A7A87 A8A97 A9A107 A10A117 A11A127 A12A1

lying on the corresponding straight lines

ai, az,as,ay4,as, ag, a7,0ag,a9, d10, A11, 12
with equations

ai:x+51.00 =0,
az:y =0,
ag:z =0,
a4:y—29500=0,
as :x+21.00 =0,
ag:y—29.00 =0,
a7 :x —91.00 =0,
as:y—25.00=0,
ag:x —90.01 =0,
ayp:y=0,
ail +: & —2 1.00 = 0,
aiz :Yy+-29.00 =0.
Let us take two points

H(0.00, —2.00), H'(0.00, 6.00)
of the exterior region (exterior points). We get a straight line h as the set of points (z, y)

satisfying the equation

z=0
containing points H, H'. The segment HH' contains the segment A3 A4 of the polygon.



We have the same situation not only for line h, but also for any broken line connecting points

Hand H'. So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.41.

In Mathematics with Observers geometry in the plane E5W,, there are a polygon, two points B, B’
of the exterior region (exterior points), and a broken line joining B and B’ such that these line,
polygon, and interior region have no common point.

Theorem 5.42.

In Mathematics with Observers geometry in the plane E5W, there is a polygon such that if A, A’

are two points of the interior region and B, B are two points of the exterior region, then there are a
broken line joining Awith A’ and a broken line joining B with B' without a common point with the

polygon.
Theorem 5.43.

In Mathematics with Observers geometry in the plane EoW,,, there are a polygon and two points A,
A’ of the interior such that a broken line joining A with A’ without a common point with the
polygon does not exist.

Theorem 5.44.

In Mathematics with Observers geometry in the plane EoW,,, there are a polygon and two points B,
B’ of the exterior such that a broken line joining B with B’ without a common point with the
polygon does not exist.

Let us go to question c).

1) Let us consider the polygon € E5W, with four vertices

A(99.99, 99.99), B(—99.99, 99.99), C(—99.99, —99.99), D(99.99, —99.99)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y—p,99.99 =0,
b:x+,99.99 =0,
c:Y+,99.99 =0,
d:r—,99.99 =0.
The interior region R™*" of this polygon is the set of points (z,y) € EoW, satisfying the

system



y —n 99.99 < 0,
T 45, 99.99 > 0,
Y +n99.99 > 0,

T —p99.99 < 0.
The exterior region R®™'*" of this polygon is the set of points

(z,y) € E2Wy \ (R™ UABUBC UCDUDA).
We see that there are no straight lines in E5W, that lie entirely outside this polygon, but

there are many straight lines that lie entirely within it. For example, taking line e with

equation
e:2><2:1:—2y:0,
we get
eNa=A,
eNb= A,
eNc=A,
eNd= A,

because for any point (z,y) € e,

T € [—49.99, —49.98, ... ,49.99]
and

y € [—99.98,—-99.97,...,99.98].
So in this case the answer to this question is negative.

2) Let us consider the polygon in EyW,, with four vertices

A(2,1), B(-2,1),C(-2,—1),D(2,—1)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y—ml1l=0,
b:x+,2=0,
c:y+,1=0,
d:x—,2=0.

Let us take the straight line e with equation



e:y=3.
This line lies entirely outside the given polygon. So in this case the answer to this question is

positive.

3) Let us consider the polygon € E>W, with four vertices

A(2, 2), B(—2, 2), C’(—2, —2), D(2, —2)
and four sides, the segments

AB,BC,CD,DA
lying on the corresponding straight lines a, b, ¢, d with equations

a:y—2=0,
b:x+,2=0,
c:y+,2=0,
d:x—,2=0.

Let us take the straight line e with equation

e:99.99 Xy +299.99 X,y =0,

and we get
eNa= A,
eNb= A,
eNc=A,
eNd= A,

because for all points (z,y) € e, we have

z,y € [-1,-0.99,...,0.99,1].
So this line lies entirely inside the given polygon. So in this case the answer to this question is

negative.

So we have proved the following:

Theorem 5.45.

In Mathematics with Observers geometry in the plane EoW,,, there are a polygon and a straight
line such that this line lies entirely outside this polygon, that is, belongs to the exterior region of this
polygon.

Theorem 5.46.

In Mathematics with Observers geometry in the plane EoW,,, there is a polygon such that there is
no straight line lying entirely outside this polygon.

Theorem 5.47.



In Mathematics with Observers geometry in the plane E5W ,,, there is a polygon such that there is a
straight line that lies entirely inside this polygon, that is, belongs to the interior region of this

polygon.

5.9 Plane and regions theorem
Classical geometry states:

“Every plane a divides the remaining points of the space into two regions having the

following properties:

a) Every point A of the region determines with each point B of the other
region, the segment AB, within which lies a point of a.
b) On the other hand, any two points A, A’ lying within the same region

determine the segment AA’ containing no point of a.”
Let us first consider the statement:
“Every plane a divides the remaining points of F3W,, into two regions.”
Let us take the plane a € EsW,,;:

QA 01 Xy T+,0 Xy Y+p03 Xp2+p,a40=0
for any

a1,02,03,04,01 Xp T,02 XpnY,03 X 2,01 Xy T+ Q2 XY+ a3 Xp 2 E Wn
such that (a1, as,as) # (0,0,0) and define the regions R{, Ry C E3W,:

R{:
a1 Xn & +p02 XpY+na3 Xp 2Z+pa4 € Wn,
a; xnx+na/2 ><ny'i_naﬁ ><nz'i'naél > 07
and
Rg:

a1 Xn & +p02 XpY+na3 Xp 2Z+pa4 € Wn,
a1 Xpn T +5, a2 xny+na3 an+na4<0a
and consider the set R* C EsW,,:

R*=R*UaUR?



Question: Do we have R® = E3W,, or R} = E3W,, \ R* # A?

Let us consider several examples.

Example 1.
Let

a:y=0.
Then

R} :y >0,

RS 1y <0,

5 = A,
which means the positive answer in this case.
Example 2.
Let
a:3x,x=0.

Then

R :3 xpz >0,
RY :3 x,x <0,
¢ — (z,y,2),z €[—99...9.99...9,—33...3.33...34]U

U[33...3.33...34,99...9.99...9],y,z € W,.
This means the negative answer in this case.

Example 3.

Let

@:99...999... 9%, 2+,99...9.99...9 x,y=0.
We get that

99...9.99...9%x,2,99...9.99...9%x,y,z€ W,
if and only if the points (z, y, 2) € « satisfy the system

Q:



—-1<z<1,
{—1 <y<1,
with arbitrary z. The set Q C E3W,, is the square on the (z, y)-plane with center (0,0) and
side 2. Then

RY:
{99...9.99...9 Xn®+,99...9.99...9%x,ye W,,

99...9.99... 9%, 2+,99...9.99...9x,y>0,
and
RS:

99...9.99...9%x,24+,99...9.99...9x,ye W,,

99...999... 9%, 24+,99...9.99...9 x,y<O.
Note that

R*=R*UaURYCQ,

but

Q\ R # A,

because, for example,

(z,y,2) =(0.99...9,0.99...9,2) £ R“.
This means that

R§ = EsW, \ R* = (EsW, \ Q) U (Q \ R%),
and thus the answer is negative in this case.
Example 4.

Let

@:99...999... 9%, 2+,99...999...9%X,y+,99...9.99...9x,2=0.
We get that

99...9.99...9%x,2,99...9.99...9%x,94,99...9.99...9x,ze W,
if and only if the points (z, y, 2) € « satisfy the system

p:



-1 <z <1,
-1 <z<1.

The set P C E3W,, is the cube with center (0,0,0) and side =2. Then

RY:
99...9.99...
99...9.99...
and
Rg:
99...9.99...
99...9.99...
Note that
but

9 Xxpx+,99
9%, x+,99

9Xpx+,99
9xpz+,99

.9.99...9 %, y+,99...9.99. ..
..9.99...9%,y+,99...9.99. ..

.9.99...9%, Y+, 99...9.99...
..9.99...9%,y+,99...9.99...

R*=R*UaURY C P,

because, for example,

This means that

(z,y,2) = (0.99...9,0.99...9,0.99...9) ¢ R.

P\ R® £ A,

s = EsW, \ R* = (EsW, \ P)U (P\RO‘),
and thus the answer is negative in this case.

9 X,z Wy,
9x,z2>0,

9 x,z€E Wy,
9 x%x,2z<0.

Question: For R = A, are statements a) and b) correct in Mathematics with Observers

geometry?

Let us start with question a).

1) Let a plane a € E3W3 have the equation

y:_17

and let RY, RS be two regions of the space E3Ws:

and so

?: [(w,ya Z)]a (*’Baya Z) € E3Wy,y > —1,
RS= [(w,y, z)], (z,y,2) € EsWi,y < —1,



EsWy =R UaURS
Let us take two points

A(99.99,0,0) € Ry, B(0,—98.88,0) € R5.
We looking for a straight line a as the set of points (z, y, z) satisfying the system of equations

ay X2 &+ as X2y +2a3 =0,
z=0,
and containing points A, B. We have

{al X9 (9999) +2ag X9 (0) +92a3 = 0,
a1 X2 (0) —2 az x2 (98.88) +2 as = 0.
We must have

|a1| <1, |a2| < 1.01.
This means that

ai X2 (9999) = —a2 X9 (9888)
All possible positive a1 form the set

® =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x» & = [0.99,1.98,...,98.82,99.99].
All possible negative as form the set

¥ =[-0.01,-0.02,...,—0.99,—1.00, —1.01],
and we get

—98.88 X9 ¥ = [0.98, 1.96,...,97.74, 98.88, 99.86].
Direct calculations show that

99.99 x2 ® N —98.88 xo ¥ = A.
So a straight line a containing the points 4(99.99, 0, 0), B(0, —98.88, 0) does not exist, that

is, a segment AB does not exist. So in this case the answer to this question is negative.
2) Let us again take the plane a € E3W5 with equation

y=-1
and two regions R{, RJ of the space E3Ws:



v=[(z,9,2)], (2,9, 2) € BsWa,y > —1,
$=[(z,y,2)], (z,y,2) € EsWa,y < —1.
So

EsWy = RYUaU RS.
Let us take other two points

A(99.99,0,0) € Ry, B(0,—98.37,0) € R».
Again, we look for a straight line a as th set of points (z, y, z) satisfying the system of

equations

a1 X2 T +2a2 X2y +2a3 =0,
z=0,
and containing points A, B. We have

{al X9 (99.99) +9 a9 X9 (O) +2a3 =0,
ai; X9 (0) —2 Qg X9 (9837) +2a3 = 0.
We must have

lai] <1, |as| < 1.01.
This means that

aj X9 (9999) = —Qa9 X9 (9837)
Again, all possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 & =[0.99,1.98,...,98.82,99.99).
All possible negative as form the set

¥ =[0.01,0.02,...,0.99,1.00,1.01],
and we get

—98.37 x9 ¥ = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 x9 ® N —98.37 xo ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a1 =0.62; a9 =-0.63; a3=—61.92.



So there is only one straight line a containing points A(99.99,0), B(0, —98.37), that is, a

segment AB exists.

Let us now see if the plane a intersects the segment AB. We get the system of equations

0.62 X9 X —29 0.63 X9 Y —2 61.92 = 0,
z=0,
Y +2 1=0.

We have

0.62 X9 x = 61.29,
but direct calculation shows that

0.62 x9 98.89 = 61.24
and

0.62 x5 98.90 = 61.30.
This means that

anNa=A,
that is, the segment AB does not contain a point of the plane a. So in this case the answer to

the question is negative.

3) Let us again take a plane a € E3W5 with equation

y+20.33=0
and two regions R{, RS of the space F3W:

(1)¢: [(xa Y, Z)} 3 ($, Y, z) S E?,Wz, Yy > —0.33,

5= [(z,9,2)], (2,9, 2) € EsWa,y < —0.33,
So

E;W, = R Ua U RY.
Let us take the same two points

A(99.99,0,0) € Ry, B(0,—98.37,0) € R5.
Again, we look for a straight line a as the set of points (z, y, z) satisfying the system of

equations

a; X9 T +2a3 X2y +2a3 =0,
z=0,



and containing points A, B. We have

{al X9 (9999) +2ag X9 (0) +92 a3 = 0,
a1 X2 (0) —2 a2 x2(98.37) +2 a3 = 0.
We must have

|a1| <1, |a2| < 1.01.
This means that

ai; X9 (9999) = —ag X9 (9837)
Again, all possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x5 ® = [0.99,1.98,...,98.82,99.99].
All possible negative as form the set

¥ =[-0.01,-0.02,...,—0.99,—1.00, —1.01],
and we get

—98.37 X9 ¥ = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 x9 ® N —98.37 xo ¥ = 61.92,
and we get only one point in intersection of these two sets, that is,

a1 =0.62; a9 =-0.63; a3=—61.92.
So there is only one straight line a containing points 4(99.99,0,0), B(0, —98.37,0), that is,
a segment AB exists. Let us now see if the plane a intersects the segment AB. We get the

system of equations

0.62 X9z —90.63 Xqy —261.92 =0,
z=0,
y+20.33 =0.

We have

0.62 x5 x = 61.74,
and a direct calculation shows that



0.62 x5 99.60= 61.74,
0.62 x299.61= 61.74,
0.62 x5 99.62= 61.74,
0.62 x5 99.63= 61.74,
0.62 x299.64= 61.74,
0.62 x5 99.65= 61.74,
0.62 x5 99.66= 61.74,
0.62 x299.67= 61.74,
0.62 x5 99.68= 61.74,
0.62 x5 99.69= 61.74.
This means that

aNa=[(99.60,—0.33,0), (99.61,—0.33,0),...,(99.69, —0.33,0)],
that is, the segment AB contains ten points of the plane a. So in this case the answer to this

question is positive.

So we have proved the following:

Theorem 5.48.

In Mathematics with Observers geometry in the space E3W,,, there are a plane a that divides the
remaining points of the space into two regions R{, R (so Ry = A) and two points A € RS,
B € R$ such that the segment AB contains no point of a.

Theorem 5.49.

In Mathematics with Observers geometry in the space E3W,,, there are a plane a that divides the
remaining points of space into two regions RY, RS (so RS = A) and two points A € RS,

B € R$ such that a segment AB contains exactly one point of a.

Theorem 5.50.

In Mathematics with Observers geometry in the space E.3Wy,, there are a plane a that divides the
remaining points of space into two regions R{, RS (so RS = A) and two points A € RS,

B € R$ such that the segment AB contains more than one point of a.

Now let us go to question b).
1) Let us take the plane a € E3W3 with equation

y=20
and two regions R{, RJ of the space F3Ws:
(11: [(xayv Z):|7 (x7y7 Z) € E3W27y > Oa

5= [(z,9,2)], (z,y,2) € EsWa,y < 0.
So



E;Ws = RS Ua U RS,
Let us take two points 4, A’ € R{:

A(0.09,0.19,0), A’(0.21,0.43,0) € R{.
We get a straight line o as the set of points (z, y, z) satisfying the system of equations

ay X2 T +gas X2y +2a3 =0,
z=0,
containing points A, A’. The segment AA’ contains the points

[(0.09,0.19,0), (0.10,0.21, 0), . .., (0.20, 0.41,0), (0.21,0.43, 0)]
and contains no point of a and region R. So in this case the answer to the question is

positive.

2) We have another straight line b as the set of points (z, y, z) satisfying the system of

equations

0.01 x2 2 4+20.01 xoy =0,
z=0,
and containing points A, A’. The segment AA’ contains the points

[(0.09, 0,0), (0.09,+0.01,0),...,(0.09,+0.99,0),(0.10,0,0), (0.10,£0.01, 0), . ...
...,(0.10,+0.99,0),...
...,(0.21,0,0), (0.21,+0.01,0), ..., (0.21,£0.99,0)]
and many points of the plane a and regions R{, R¢. So in this case the answer to the

question is negative.
3) Let us take the plane a € E3W, with equation

y=1
and two regions R{, RS of the space E3Ws:

(11: [($,y, Z)}, (w,:% Z) € EsWy,y > 1,
3: [(z,y, Z)L (w,y’ Z) € EBWZ,:‘/ <1
So

EsWy = R? Ua U Rg.
Let us take two points

A(99.99,0,0), A'(0, —98.88,0) € R».



We look for a straight line a as the set of points (z, y, z) satisfying the system of equations

a1 Xa T +20a2 X2y +2a3 =0,
z=0,
and containing points A, A’. We have

{al X9 (9999) “+9 a9 X9 (O) +9 a3 = 0,
ai X9 (0) —9 @9 X9 (98.88) +9a3 = 0.
We must have

]a1] S 1, ‘a,z‘ S 1.01.
This means that

a1 X2 (99.99) = —ag x2 (98.88).
All possible positive a1 form the set

$ =[0.01,0.02,...,0.99,1.00],
and we get

99.99 x & =[0.99,1.98,...,98.82,99.99).
All possible negative as form the set

¥ = [-0.01,-0.02,...,—0.99,—1.00, —1.01],
and we get

—98.88 x9 ¥ = [0.98, 1.96,...,97.74,98.88, 99.86].
Direct calculations show that

99.99 xo ® N —98.88 xo ¥ = A.
So the straight line a containing points A4(99.99,0,0) and A’(0, —98.88,0) does not exist,

that is, a segment AA’ does not exist. So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.51.

In Mathematics with Observers geometry in the space E.3Wy, there are a plane a that divides the
remaining points of the space into two regions Ry, RS (so R§ = A) and two points A, A’ € R$
such that the segment A A’ contains points of R{ and no point of o U RS.

Theorem 5.52.

In Mathematics with Observers geometry in the space E.3W,,, there are a plane a that divides the
remaining points of space into two regions R, RY (so R = A) and two points A, A" € R
such that the segment A A’ contains points of RS, points of a, and points of RY.



Theorem 5.53.

In Mathematics with Observers geometry in the space EsW,,, there are a plane a that divides the
remaining points of space into two regions RS, Ry (so R§ = A) and two points A, A" € R{
such that the segment A A’ does not exist, that is, the points A, A’ do not lie together on any
straight line.



6 Observability and properties of parallel straight lines

In classical geometry, two lines a, b lying in a plane a are called parallel if

anb=A.
In Mathematics with Observers geometry we have to strengthen this definition in the
following way: A straight line a that lies in a plane a divides the remaining points of this
plane into three regions, R{, R3, and RS. Also, a straight line b that lies in a plane a divides

the remaining points of this plane into three regions, RY, Rg, and Rg.

We call straight lines a, b C « parallel and write a || b if

{b c (R*U RY),

bﬁR‘f = A,
or
{b C (Rg U Rg),
bﬁR‘z‘ = A,
and

anb=A.
We call straight lines b, a C « parallel and write b || a if

{a C (R} U RY),

aﬂR’{ = A,
or

a C (RS URY),

an Ry # A,
and

bNa=A.
So we define the parallelism of straight lines not symmetrically: a || b and b || a. Here we put

additional conditions because, for example, we get the following situations:

1. Let n = 2 and consider two straight lines a, b in EoW,:

a:99.99 X9z —599.99 X,y =0,
b:y=2.



Note that

aC [(z,y),z € [-1,1],y € [-1,1]].
We have

Rg = [(:Iz,y),a: € W27y€ W27y< 2]7

a C RS,
bNa=A,
thatis, b || a. However,

that is,

anNb=A,
we get b }f a. This means that in this case, the relations a || b and b || a are not symmetric

in Observer’s geometry.

2. Let n = 2 and consider two straight lines a, b in EoW:
a:y=0,
b:y=2.

We have

R} = [(m,y),m e Wy, ye Wy, y < 2],
a C RS,
bNa=A,

thatis, b || a. Also,

Rcll = [(x7y)7x € W27y S W27y > 0}7
b C RS,
anNb=A,
| b. This means that in this case, the relations a || b and b || a are symmetric

so we get a

in Observer’s geometry.

3. Let us first consider first three straight lines a, b, c € Eo2W:
a:y=2,
b:z =2,

€:99.99 X9 —999.99 x5y =0.
We have



RS = [(m,y),x e Way,ye Wa,y < 2},
¢ C R3,
anNc=A,

thatis, a || c. Also,

R} = [(m,y),x eWy,ye Wy, z < 2],

c C RS,
bNc=A,
thatis, b || c. However,

anb=1(2,2) #A,

that is, a }f b. So in this case the relations a || c and b || ¢ (a # b) do not mean the relation

a || b, that is we do not have parallelism transitivity.

Note that we have the same situation in classical Gauss-Bolyai-Lobachevsky geometry.

4. Let us consider three straight lines a, b, c € EaWa:
Y =4
b:y=1,
c:y=0.
We have

5= [(:c,y),ac e Wy, y € Wa,y < 2},
¢ C R3,
aNc=A,
thatis, a || c. Also,

Rg = [(w,y),m S W27y€ W27y< ]-]7
c C R},

bNc=A,
thatis, b || ¢, and

bC R,
anb = A,
thatis, a || b.

So in this case the relations @ || c and b || ¢ ( a # b) mean the relation a || b, that is, we

have parallelism transitivity.



Note that we have the same situation in classical Euclidean geometry.

5. Let us take two straight lines a,b € EsW5, a with equation

3 Xox —2Y = 07
and b with equation

Y—2 1=0.
Because the number 3 does not have an inverse number in W5, we get

anNb=A,
that is, the straight lines a and b have no common points but are not parallel in common

and Mathematics with Observers geometry senses. To see this, let us consider

R}= [(w,y), (a:,y) € ExyWa,y > 1}7
Rb: [($7y)7 (x’y) € E2W27y < 1})

and
b
R3 - A

We get

anN RS #A,

aNRS #A,
thatis, a }f b.
6. Let us take two straight lines a, b € E2W>, a with equation

y=0,

and b with equation

y—21=0.

The straight line o divides the remaining points of E2WW> into two regions R{ and R5 with

411: [(x’y)a (xay) < E2W2ay > O}a

(21: [(may)a (xay) € E2W2,y < 0}
So

E;Wy =R UaU Rj.
Also, the straight line b divides the remaining points of E5W5 into two regions R’{ and Rg
with



Rb: [(xay)a (CC,y) € E2W27y > 1}7

Ry= [(CB,y), (-’E,y) € ExyWs,y < 1}
So

EyWs, =R\ UaURY).
Lines b C R{ and a C R%, and

anNb=A,
that is, the straight lines a and b are parallel in common and Mathematics with Observers

geometry senses.

6.1 Parallel lines theorem
Classical Euclidean geometry states:

“If two straight lines a, b of a plane do not meet a third straight line c of the same plane,

then they do not meet each other.”
Question: Is this statement correct in Observer’s geometry?

1) Three straight lines in EoW,

b:—-0.01 Xox +o2y—21=0,
c:0.01l xozx4+oy—21=0,
and

d:y—1=0
do not meet the fourth straight line

a:y=0,
but

bNnend=(0,1) € E;W,.
So the answer to the question is negative.

2) Two straight lines in FyWy

a:3XxXox—y=20
and

b27><2.’13—2y:0



do not meet the third straight line

C:y—z].:O,
but

anb= (0,0) € EyW,
So the answer to this question in this case also is negative.

3) Two straight lines in FyWjy

a:3xXox—y=20
and

b:3><2.17—2y—23:0
do not meet the third straight line

c:y—1=0,
and a and b are parallel. Note that in this case, a }f ¢ and b }f c. So in this case the answer to

the question is positive.

So we have proved the following:

Theorem 6.1.

In Mathematics with Observers geometry in the plane EoW,, there are three straight lines a, b, ¢
suchthataNc=A,bNc=A andanb=A.

Theorem 6.2.

In Mathematics with Observers geometry in the plane E5W ,, there are three straight lines a, b, ¢
suchthataNc=A bNc=A,andanb+# A.

6.2 Euclid’s axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane a, through any point A lying outside of a straight line a, there can be drawn a unique

straight line parallel to line a?

1) Let plane a € E3W, have the equation

z=0.
So we are in EsW,. Let straight line a have the equation

y:Oa



and let two regions R{ and R of plane a be

(112 [(«T;y)]; (xay) € EoWs,y > 0,
(212 [("Bay)}a (way) € EyWo,y <0,
where x is any element of Wa. So

EsWy = Rtll Ua U R%.
Let us take two points

A(—99.99,0.01), B(0,1) € R;.
We look for a straight line b as the set of points (z, y) satisfying the equation

a1 X2« +2a2 Xay+2a3 =0
and containing points A, B. We have

{—al X9 (99.99) +9 a2 X9 (0.01) +2a3 =0,
a1 X9 (0) +9 a9 X9 (1) +9 a3 = 0,

that is,
—ai1 X2 (99.99) +92 a2 X9 (0.01) —a a3 =0,
as = —Qas.
For
a9 — ].,
we get
a; = —001,

and the equation of line b is

b:—0.01 X2$+2y—21:0.

We have
b C R
and
bNa=A.
We have

Rb: [(xay)}a (Cl?,y) € E2W2> —0.01 X9 T +2 Y—2 1> Oa

R)= [(z,9)], (z,y) € E2Wa,—0.01 X +2y—21 <0,
and



a C R
So lines a, b are parallel, a || b. Also, line ¢ with equation

00l xXox+2y—21=0
is parallel to line o and contains the points B and A’(99.99,0.01). Consider straight line d

with equation

y=1.
We see that lines a, d are parallel and line d contains point B. This means that in the plane

a:z=0,
through point B lying outside straight line o, we can draw at least three distinct straight lines

b, ¢, d parallel to line a. So in this case the answer to the question is negative.

2) Let us continue to consider case 1) without situation with

a9 = 1.
So we have line e with equation

a; Xo & +2a3 Xa2y+oa3 =0
with conditions

{—al X9 (9999) +9 a9 X9 (001) —9 Q9 = 0,
a3 = —as.
We must have

|a1\ S 1.
All possible positive a; form the set

$ =[0.01,0.02,...,0.99,1.00],

and we get
99.99 x2 & =[0.99,1.98,...,98.82,99.99].
If
|a2| < 1,
then we get

{—al X9 (9999) —9 Q9 = 0,
a3 = —az,
and possible situations are



a; = —0.01,

as = 0.99,

a3 = —0.99,
or

ay = 0.01,

as = —0.99,

as — 0.99.

These two solutions define the same line, that is, the equation of line e is

—0.01 Xo & +2 0.99 X9 Y —2 0.99 = 0.

We have
A,Bc€ e,
but
x = —99.99,
0.99 xoy =0,

that is, line e contains the points

[(—99.99,0), (—99.99, +£0.01), . .., (—99.99, +0.09)],

and
eNa # A,
eﬂR‘f = A,
eNRS # A.
So lines q, e are not parallel. Thus we cannot assume that
|CL2| < 1.
3) Let us consider the last case where
|0,2| > 1.

We look for a straight line f with equation

frar Xz +2as Xoy+o2a3=0
and containing points A, B. If we take negative a; such that

|a1| cod \ [0.01, 1] = [0.02, .. .,0.99]
and so

99.99 x5 [0.02,...,0.99] = [1.98,...,98.82],



that is,

ay X3 (99.99) € [-1.98,...,—-98.82],
then from the system

—ai X9 (9999) +9 a2 Xg (001) —9 Qg = 0,
a3 = —aaz,
we get the following equation for as:

a9 X9 (001) —9 Q3 = A1 X9 (9999)
Solution ay of this equation exists not for all a;. For example, for

a; = —002,
we get
a9 — 1.99
and
f:—0.02 x92+51.99 x5y —51.99 = 0.
We have

Rl= [(z,9)], (z,y) € EsWy, —0.02 x5 2 +5 1.99 x5y —3 1.99 > 0,
R]= [(z,9)], (2,y) € EaWy, —0.02 X3 2 +51.99 X9y —» 1.99 < 0,

line f C R{ contains points A, B, line a C RI , which means that lines a, f are parallel, a || f.

As in 1) of this section, we have the lines

g:0.02xX22+4+21.99 X2y—21.99=0
and

h:y—1=0
containing point B and parallel to line a. For all cases where line f exists, we have that line
f C R{ contains points A, B and that line a C R!, which means that lines a and fare

parallel, a || f.

4) Let plane @ € E3W3 have the equation

z=0.
So we are in EoWj. Let the equation of straight line a be

y:Oa



and let two regions R{, R of plane a be

(112 [(«T;y)]; (xay) € EoWa,y > 0,
(212 [("Bay)}a (way) € EyWo,y <0,
where x is any element € Wj. So

EsWy = Rtll Ua U R%.
Let us take two points

A(—99.99,0.01),B'(0,u) € R‘f,
where

0<u<l.
We look for a straight line b as the set of points (z, y) satisfying the equation

a1 X2 +2a2 Xoy+oaz =0
and containing points A, B'. We have

{—al X9 (99.99) +92 a2 X9 (0.01) 42 a3 =0,
a1 X9 (0) +2 a9 X9 (U) +92a3 = O,
that is,

{—al X9 (9999) +92 a2 X2 (001) —9 a9 X9 (u) =0,
ag = —ag X9 (U)
As above, for negative a1,

—ay X9 (99.99) S [0.99, 1.9§,... ,98.82,99.99].
We must have

as > 0.
If
as <1,
then
ag X9 0.01=0
and

as X9 u < 0.99.
If



a9 = 1,
then
as X9 0.01= 0.01,

a2 X2 u=u,
and

0.99 +5 0.01 —5 u # 0.
5) Let us now consider the case

as > 1.
We have

{—a1 X9 (9999) +9 a9 Xo (001) —9 QA9 X9 (’U,) = 0,
a3 = —ag X2 (u)
For

u = 0.01,
a2 does not exist, and thus line b does not exist. This means that there is only one line

y—2001=0
containing point B’ and parallel to line a.

6) Let us continue with the case

as > 1.
For
u = 0.02,
we get
a; = —001,
as = 99.99,
a3 = —1.98,

and line b contains points A, B’ and has the equation

—0.01 Xo & +9 99.99 X9 Y —2 1.98 = 0.
We get

RV= [(x,y)}, (z,y) € EoWs5,—0.01 Xg 2 +299.99 X9y —5 1.98 > 0,
Ri=[(z,y)], (z,y) € E2W5,—0.01 x5 +299.99 x5y —3 1.98 < 0,



and

bC R aCRSanb=A,anda | b.

For
u=0.1,
we get
a; = —0.09,
az = 99.00,
as = —9.90,

and line b with equation

—0.09 X2 £4+299.00 X249y —29.90=0
contains points A, B’ and is parallel to line a.

7) Let us take two points

A(—99.99,0.01),B'(0,u) € R‘f,
where

u > 1.
We look for a straight line b as the set of points (z, y) satisfying the equation

a1 X2 +2a2 Xoy+oaz =0
and containing points A, B'. We have

{—al X9 (99.99) 492 a2 X9 (0.01) 42 a3 =0,
a] X9 (0) +9 a9 X9 (U) +92a3 = O,
that is,

{—al X9 (9999) +92 a2 X2 (001) —9 a9 X9 (u) =0,
ag = —ag X9 (u)
As above, for negative a1,

—a1 X9 (99.99) S [0.99, 1.9§,... ,98.82,99.99].
We must have

as > 0.
For example, if



u = 1.25,
then we get

a1 = —0.12, a2 =9.69, a3=—12.06,
and line b with equation

—0.12 X9 £ 49 9.69 X9y —212.06 =0
contains points A, B’ and is parallel to line a. Also, lines

c:0.12 X92x4+99.69 X9y —12.06 =0
and

d: Y —2 1.25=0
contain point B’ and are parallel to line a.

8) For point B'(0, u) with arbitrary

u >0,
there is straight line b with equation

b:y—u=0
containing point B’ and parallel to line a.

So we have proved the following:

Theorem 6.3.

In Mathematics with Observers geometry in the plane EoW,,, there are a straight line a that divides
the remaining points of plane into two regions R and R4 (so R§ = A) and two points

A, B € R{ such that there is no straight line b containing points A, B and parallel to a.

Theorem 6.4.

In Mathematics with Observers geometry in the plane EoW,, there are a straight line a that divides
the remaining points of plane into two regions R$ and R4 (so R§ = A) and two points

A, B € R{ such that there is unique straight line b containing points A, B and parallel to a.
Theorem 6.5.

In Mathematics with Observers geometry in the plane EoW,,, there are a straight line a that divides
the remaining points of plane into two regions R and R§ (so R§ = A) and two points

A, B € R{ such that there is more than one straight line b containing points A, B and parallel to a.



6.3 Gauss-Bolyai-Lobachevsky axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane q, through any point A lying outside a straight line a, there can be drawn more than one

straight line parallel to line a?

1) Let plane o € E3W, have the equation

z=0.
So we are in EoW,.

Let straight line a have the equation

y=0,
and let two regions R{, R$ of plane a be

R(ll = [(xay)a (xay) € E2W2ay > 0]
and

R% = [(xvy)a (xay) < E2W2ay < 0})
where x is any element € W5. So

E; Wy =R UaU R;.
Let us take two points

A(—99.99,0.01), B(0,1) € RY.
We look for a straight line b as the set of points (z, y) satisfying the equation

a1 Xg & +2a3 X2y +2a3=0
and containing points A, B. We have

{—a1 X 9 (99.99) +9 a9 X9 (0.01) +2a3 =0,
a1 X9 (0) +9 a9 X9 (1) +9a3 = 0,
that is,

—a1 X9 (9999) +9 ag X9 (001) +9 a3 = 0,
as = —Qas.
For

a9 — ].,
we get



a; = —001,
and the equation of line b is

b:—0.01 X2$+2y—21:0.

We have
b C R}
and
bNa=A.

We have

Rb: [(l’,y)}, (.’L’,y) € EQWQ, —0.01 X o T +2 Y —o 1> O,

Rg: [(m,y)}, ($7y) S E2W2, —0.01 X9 T +2 Y —2 1< 0,
and

a C RS,
So line ¢ is parallel to line b, and line b is parallel to line g, thatis, a || b and b || a.

Note that we can write

b:y=0.01 X9z +51.
We get

b=35_99US ggU---USyUSpg9US1.99U---USog99 U Sgg.99,
where

S_g9= [(,0.01),—-99.99 < z < 99.00],
S_gs= [(,0.02),—98.99 < z < 98.00],

So= [(=,1.00),—0.99 < = < 0.00],
So.99=[(,1.00),0.00 < z < 0.99],
S1.99= [(z,1.01),1.00 < & < 1.99]

Sos.99= [(,1.98),98.00 < z < 98.99],

Sog.90= [(2,1.99),99.00 < = < 99.99].
Also, line ¢ with equation

0.01 ><2.’L‘+2y—21:0



is parallel to line o and contains points 8 and A’(99.99,0.01).
Note that we can write

c:y=—0.01 X9z +,1.
We get

b=T ggUT ggU---UTyUTpg9UT99U---UTygg9U Ty 99,
where

T g9= [(z,1.99),—99.99 < & < 99.00],
T g5= [(z,1.98), —98.99 < z < 98.00],

To= [(=,1.00), —0.99 < z < 0.00],
To.99= [(,1.00),0.00 < z < 0.99],
T1.99= [(,0.99),1.00 < z < 1.99],

Tos.99= [(,0.02),98.00 < z < 98.99],

To9.99= [(x,0.01),99.00 < = < 99.99].
So line o is parallel to line ¢, and line c is parallel to line o, that is, a || ¢ and ¢ || a. Moreover,

bne=[(z,1)],-0.99 < z < 0.99

and
Be (bNe),
thatis, b f c.
Consider straight line d with equation
y=1.

We see that lines o and d are parallel and that line d contains point B. This means that in the

plane

a:z=0,
through point B lying outside straight line a, we can draw at least three distinct straight lines

b, ¢, d parallel to line a.

1’) Let again plane @ € FE3W3 have the equation



z=0.
So we are in E5W,. Let the equation of straight line a be

Y= _17
and let two regions R{ and RS of plane a be

Rtll = [($7y)7 (iL',y) S E2W2ay > _1}
and

RLZl = [(x’y)v (w,y) S E2W2ay < _]-]7
where x is any element € W5. So

E2W2 = Rcll UaU Rg
Let us take two points

A(—99.99,0.00), B(0,99.99) € RY.
We look for a straight line b as the set of points (i, y) satisfying the equation

a3 Xo & +2a3 Xa2y+oa3 =0
and containing points A, B. We have

{—al X9 (9999) +9 a9 X9 (000) +9 a3 = 0,
aip X9 (0) +92 a2 X2 (99.99) +2 a3 =0,

that is,
{—al X9 (9999) +o a3 = 0,
as X9 (9999) +9 a3 = 0.

For

a2 =1,
we get

ajl = -1
and

as = —99.99,

and the equation of line b is

b:y=x+299.99 =0.
We have

b C R}



and

bNa=A.
Also, we have

R} = [(z,9), (z,y) € EaWa,y = & +299.99 > 0]
and

R} = [(x,9), (2,y) € BEsWa,y = @ +399.99 < 0],
where x is any element such that —99.99 < z < 0, and

anNR} = A,
anNRS # A.
So line a is parallel to line b, and line b is parallel to line a, that is, a || b and b || a. Also, line ¢

with equation

c:y=—-—+299.99=0
is parallel to line o and contains points B and A’(99.99, 0.00). So line a is parallel to line c,

and line c is parallel to line g, that is, a || ¢ and ¢ || a. Moreover,

bNec=(0,99.99) = B,
thatis, b Jf c.

If we consider straight line d with equation

y = 99.99,
we see that lines a and d are parallel and that line d contains point B. This means that in the

plane

a:z=0,
through point B lying outside straight line a, we can draw at least three distinct straight lines

b, ¢, d parallel to line a.

So we have proved the following:

Theorem 6.6.

In Mathematics with Observers geometry in plane EsW ,, there are a straight line a that divides the
remaining points of the plane into two regions R$ and R§ (so R§ = A) and a point A € RS such
that there are is than one straight line b containing point A and parallel to a.

2) Let us take two straight lines a,c € FsWs:



a:99.99 X9 —999.99 x5y =0,

c:y+22=0.
Line a is the set of points (z,z) € EsWj with z € [—1,—0.99,—0.98,...,0.99, 1] and
divides E, W, into three regions R{, R3, R3:

1= [(z,y), (z,y) € E2W>2,99.99 X5z —3 99.99 x5y > 0],

5= [(z,9), (z,y) € E2W>2,99.99 X5z —3 99.99 x5y < 0],
and

R{UaURS CQ,
where

Q= [(.’B,y),—l <z<1L1<y< 1]a
R%: E2W2 \ (R?UGUR(QI)

Line c divides E> W5 into two regions R{, RS:

{1:: [(li,y), (iL’,y) S E2W2ay+2 2> O}a
Rg: [(mvy)a (xay) € E2W2ay+2 2< 0}7
where x is any element € W5, and

E2W2 = Ri UcU Rg
We get

a C RY,
but

c C R3.
Soc| a,buta}fc

3) Let us take three straight lines a, b, c € E;yWs:

a:99.99 Xo —299.99 X2y =0,

b:99.99 X5z +599.99 x5y = 0,

c:y+22=0.
Line a is the set of points (z, ) € EsW, with z € [—1,—-0.99,—0.98,...,0.99, 1], line b is
the set of points (z, —z) € EoW, with € [—1,—-0.99,—0.98,...,0.99,1], and

anb=[A(0,0)].
Line c divides E,W; into two regions RS, RS:



i: [(.’E,y), (xay) € E2W2,y+2 2> 0},

g: [(x7y)7 (xa y) € ExWs, Yy+22< O}a
where x is any element € Wy, and

E,;Wsy = R{ U cU Rs.
We get

aC RY,
bC R,
but line a is the set of points (z,z) € E;Ws with € [—1,-0.99, —0.98, ...,0.99, 1].

Line a divides Eo W into three regions R{, R}, RS:

Ri=[(z,y), (z,y) € E3W>,99.99 x5 2 —99.99 X5y > 0],
R3=[(z,v), (z,y) € E3W>,99.99 x5 2 —99.99 x5y < 0],
R$= E,W, \ (Rf UaU R}),

and line b is the set of points (z, —z) € E;Ws with z € [—1,—0.99, —0.98,...,0.99, 1].

Line b divides F5 W into three regions RS, R}, R}:

RY= [(z,y), (z,y) € E2W>,99.99 x5 +2 99.99 x5y > 0],
Rb= [(z,y), (¢,y) € ExW5,99.99 x5z +599.99 x5y < 0],
R3= E;W2 \ (R] UbU Ry),

and
R!UaURYUR'UbBURYS C Q,
where
Q= [(:E,y),—]_ <zx<l1l-1<y< 1}-

We get

aC RS,

bC RfY,
but

cC R3,

cC Rg.

Soc|aandc| bbuta ff cand b j c.



So we have proved the following:

Theorem 6.7.

In Mathematics with Observers geometry in a plane a, through any point A lying outside a straight
line c, there can be drawn more than one straight line that has no common points with ¢, belongs to
one region RS, and is not parallel to c.

Note that if we take points B(0.5,0.5) € a and D(0.5, —0.5) € b and consider the vectors

AB= (05, 05) e EyW,,
AD= (05, —05) € EyWs,
then we get

(AB,AD) = 0.
So we have proved the following:

Theorem 6.8.
In Mathematics with Observers geometry in a plane a, there are a straight line ¢ and a point A lying

outside c such that through this point A, there can be drawn at least two straight lines a and b that
are perpendicular to each other, have no common points with c, belong to one region RS, and are
not parallel to c.

4) Let us take six straight lines a, b, ¢, d, e, f € E;Ws:

a:99.99 X9 —999.99 X,y =0,
b:99.99 x5 +299.99 X,y =0,
c:y+22=0,
d:x+92=0,
e:y—2=0,
f:$—22:0.

Line a is the set of points (z, ) € E2Wy with z € [—1,—-0.99,—0.98,...,0.99, 1], line b is
the set of points (z, —x) € EoW, with z € [-1,—-0.99,—0.98,...,0.99, 1], and

anb=[A(0,0)].
Line c divides E, W into two regions R{, RS:

Ri: [(xvy)}a(may) € E2W2,y+2 2> Oa
R5= [(z,y)], (z,y) € BaWa,y+22 <0,

where x is any element € Ws, and

EoWy = Ri UecU Rg
Line d divides E2W> into two regions R, Rg:



R{= [(z,9)], (z,y) € EaWy,z +22 > 0,

Rd: [(zay)} ) ("Evy) € E2W2’ T +9 2 < 0,
where y is any element € W5, and

E,W, = RIUdU RS
Line e divides F5 W5 into two regions RS, RS:
i: [(w?y)} ) ($7y) € EaWiy,y—22 >0,
SZ [(w,y)} ) (ajay) € EoWs,y —22 <0,

where x is any element € W, and

E, Wy = R{ UeU Rs.
Line f divides F» W5 into two regions Rf , Rg :
R{: [(iﬁ,y)}, ($7y) S E2W2,$ —2 2 > 0,
Ré: [(x,y)], (w7y) € E2W2,33 —92 < O,

where y is any element € W, and

E,W, =R/ U fUR).

We get
cld, cLf, eld elf, cle d|f, elec fld,
and
R!UaURSURIUbBURS C Q,
where
Q=[(z,y),-1<z<1,-1<y<1].
We have

aC RS, aC R}, acC RS, aCRg,
bC RS, bCR! bCRS bCR],
cCRSdCRSeCR: fCRYandeC R}, dC RS, eC R, fCRS.

So we have proved the following:

Theorem 6.9.
In Mathematics with Observers geometry in a plane q, there are straight lines ¢, d, e, f such that
cld, clLf, dle fle



and a point A lying outside these straight lines such that through this point A, there can be drawn at
least two straight lines a and b that perpendicular to each other, have no common points with ¢, d,
e, f, and, moreover,

aCR$, aCR! acCR acCR]

bC RS, bCR! bCRS, bcCR],
cCR,dCR,LeCR}, fCR:,cCRSdCR,eCR, fCRSandalfc ald,
alfealf foffcblhdble bl f butc|a d|aela flacl|bd|belbdf]|ob.

5) As we saw above, we have the following: In a plane a, there are a straight line b and a

point A lying outside of this straight line such that through this point A, there can be drawn at

least two straight lines o and c that parallel to line b, and we have a || b, b || a,c || b, b || c.

So we have the following:

Theorem 6.10.

In Mathematics with Observers geometry in a plane q, there are a straight line b and a point A lying
outside this straight line such that through this point A, there can be drawn at least two straight
lines a and c that are parallel to line b.

6.4 Riemann axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane g, through any point A lying outside a straight line a, there can be drawn no straight

line parallel to line a?

Let us consider a classical Riemannian geometry model for E3Ws: a straight line a € E3W,
is an intersection of plane a € E3W5 with the unit sphere, where plane a contains the
origin, the point (0,0,0). In Euclid’s three-dimensional space, such two distinct straight lines

intersect in two points.
1) Let us take two planes

a:x+oy—24%xX92=0
and

B:y—24x92=0
and the unit sphere with equation

Sph:x Xox +9y Xy +92X92z=1.
We get



aNBNSph=A,
because we have

xz =0,

y—24><2Z:0,

17 x2 (2 X2 2) =1,
and

1771
does not exist because

17 x5 0.05= 0.85,
17 x5 0.06= 1.02.
So, unlike in the classical case, two lines do not intersect.

2) Let us take two planes

and

B:y=0
and the unit sphere with equation

Sph:x Xox +oy Xoy—+92X92z=1.
We get

a N BN Sph = [(0,0,-1),(0,0,1)].

So, as in the classical case, two lines intersect in two points.

3) Let us take two planes

a:0.01 X9 X —9 0.02 X2 Y —2 0.22 X9 2 = 0
and

B:2=0
and the unit sphere with equation

Sph:x Xex +2y Xoy+22xXg92z=1.
We get



o N BN Sph= [(+0.60,+0.80,0),...
...(%0.69,+0.80,0), (+0.60,+0.81,0),...,(+0.69, +0.81,0), ...
..., (+£0.60,+0.89,0),...,(+0.69,+0.89,0), (+0.80,+0.60,0), . ..
...,(£0.89,+0.60,0), (+0.80,+0.61,0),...,(+0.89,+0.61,0),...
...,(+£0.80,+0.69,0),...,(40.89, +0.69, 0)} ,
that is, the total number of common points here is 800 (from the point of view of W, -
observer with m > 13). So, unlike in the classical case, we have 800 points in the intersection

of two lines (from the point of view of W,,,-observer with m > 13).

So we have proved the following:

Theorem 6.11.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the
space EsW, (i. e, straight line a € E3Ws is the intersection of a plane o« € E3Ws with the unit
sphere, where plane a contains the origin, point (0,0,0)), there are two straight lines a and b such
thata N'b = A.

Theorem 6.12.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the
space EsW,, there are two straight lines a and b such that a N'b # A contains exactly two points.
Theorem 6.13.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the
space E3W,, there are two straight lines a and b such that a N'b # A contains more than two
points.

6.5 Observability and geometry: the main parallel lines
theorem

Let us first prove the following theorem.

Theorem 6.14.

In the plane EoW,,, there are a point A and a straight line b not containing this point such that any
straight line a containing point A and line b are not parallel: a [ b and b }f a.

Let us first consider the case n = 2, that is, we are in E5W5. Let us consider the class of

straight lines with equations

y=kXxXsx 43¢
or

0=z+s¢,



where all elements are in Ws. Let A(—99.99,99.99) € E;W, and consider the straight line
b:

b:x—oy=0.
Then

Aghb.

We look for a straight line a containing point A. We have

a:y=kxgx+soc
or

a:0=xz+5c¢
for all

k,c,z,y,k Xox, k X9gx +9c € Ws.
Let us consider the first case. We must have

99.99 = k X5 (—99.99) +, c.
We get

k| <1,
c=99.99 +2 k X2 99.99,
and thus

-1<k<0.
So line g has the equation

a:y=kxyx+5(99.99 +5 k x5 99.99).

If
k= -1,
then we get
a:y=-—zx
and
anb=(0,0),

thatis, a Jf band b }f a.

If



k=0,
then we get

a:y=99.99
and

anb=(99.99,99.99),
thatis, a Jf band b }f a.

If
-1 < k<0,
then we get
a:y=kxXox+5(99.99 +2 k x5 99.99)
and

A(—99.99,99.99) € a.
For x = 99.99 and k£ = —0.99, on line a, we get

y = —0.99 x5 99.99 45 (99.99 —5 0.99 x5 99.99) = —97.65.
For x = 99.99 and k£ = —0.01, on line a, we get

y = —0.01 x5 99.99 45 (99.99 —5 0.01 x5 99.99) = 98.01.
For z = 99.99 and —1 < k < 0, on line a, we get

y € [—97.65, 98.01],

that is,
y < 99.99.
This means that
b
aNR] #A
and
b
anNRy#A.
Also, we have
bN R‘f = A

and

b RS +# A.



This means that straight lines a and b are not parallel, a }t b, and straight lines b and a are

not parallel, b } a.
Let us now consider the second case:

a:0=x+5c.
Clearly, x,c € W,.

We look for a straight line a containing point A. We have

0=-99.99 +5c¢c

or
c = 99.99,
that is,
a:x=—99.99.
So

aNb= B(—99.99,—-99.99).
This means that a }f b and b }f a.

So we have proved the theorem for n = 2 and the class of straight lines with equations

y=kXxox+gcC
or

0=x+5c.
The theorem is still correct for this class of straight lines for all n, and the proof is practically
the same.

Now let us consider the general case of any straight lines. First, let us take n = 2. Let again
consider the point A(—99.99,99.99) € E,W,. We look for a straight line a containing this
point. We have

a:a] X9 +9 a9 ><2’y—|—20,3:0
for all

ai,as,a3,T,Y,a1 X2 T,q3 X2Y,a1 Xo T +oa3 X2y € Wo
such that (a1, a2) # (0,0) and



a1 X9 (—9999) “+9 a9 X9 99.99 +92a3 = 0.

We get

’al, < 17

|a2| < 1.
Also, if

a; = ay,
then

ag — 0
However, if

a; = —Qa9 = 1
or
a; — —Qag = —].,

then line o does not exist, because in this case,

a1 X9 99.99 —9 a9 X9 99.99 g WQ.
So the equation of line a is

a:a; XoI +92ag XoUY+2 (0,1 X9 99.99 —9 Qg X9 9999) =0
for any

a1,02,03,T,Y,01 X9 T,09 X2 Y, a1 Xo & +92 a3 X2Y,a1 X2 99.99 —5 as X5299.99 € W,
such that (a1, as) # (0,0) and
’al, < 1)
|a2| < 1.

Note that for line a, we have that or any x, y, a1, a2,

]a1| X9 |:B’ S \all X9 99.99
and

|az| X2 |y| < |az| x2 99.99.
Moreover, inequalities become equalities only in the cases

lai| =1,
x = £99.99,
or



0.10 < |aq| < 0.99,
z = +99.9,
or

0.01 < |a1| < 0.09,
T = 199. x%,
where » is any digit 0,1,...,9.

The same situation takes place for as:

{|a2| =1,
y = 4+99.99,
or

y = +99.9x,
or

0.01 < |az2| < 0.09,
Yy = £99. %x.
Now rewrite the equation of line a as

a:a; Xo +2a9 XoY+2a; Xo 99.99 —9 Q9 X9 99.99 =0
and let us assume that a; and as have opposite signs, for example,

—1<a < 0,
0<ay <.
Line a exists in this case only if

(—0.99 < a; < —0.10,
0.01 <as <£0.09

¢ —a1 X299.99 +2 a2 X299.99 € Wy,
x = —99.9x,

LY = 99. %%,

or



(—0.99 < a; < —0.10,
0.10 < ay <£0.99,
—a1 X299.99 43 a2 x299.99 € Wo,

x = —99.9x,
LY = 99.9%,
or
(—0.09 < a; < —0.01,
0.01 < ay <0.09,
{ —a1 X299.99 42 a2 X2 99.99 € Wy,
T = —99. %%,
LY = 99. %,
or

(—0.09 < a; < —0.01,

0.10 < as <£0.99,

{ —a1 X299.99 +2 a2 X299.99 € Wy,

T = —99. %%,

Ly = 99.9x.

We get the same result when the coefficients a; and ay of line a have opposite signs:

—1<ay <O,
0<ar <l
Let us now consider straight line b:

b:x—2y=0.
Question: Is there straight line a parallel to line b?

Note that A € Rg,where Rg C EsWs, Rg = EyWs \ (R’{ ubu Rg),

Rl{:
{x_2y€ Wna
x—2y >0,
Rg:
{x_2y€ Wn7
x—2y<0.

As we proved above, in the case where the coefficients a; and a2 of line a have opposite

signs,



{—1<a1 <0,

0<a2<1,
or
—-1<ay <0,
0<a <1,
we get
a C RS,
andso a }f b.

Let us now consider two extreme cases.

Case 1. a1 = 0, and hence

a:az Xo2Y—20as ><299.99:O.

{|a2| <1,
az#O,

(99.99,99.99) € a N b.

With any a2 such that

we get

Case 2. as = 0, and hence

a:al Xox+9a1 X299.99 = 0.

{|a1| <1,
al#o,

(—99.99,—99.99) € a N'b.
This means that in both extreme cases, a }f b.

With any a1 such that

we get

Let us now consider the “central” case for line a:



(a1,a9 € W,
0 < |ai| <1,
20 < Jaz| <1,
a1 = ay,

a1 X2 & +2 a1 Xoy=0.
This means that O(0,0) € a, thatis, O(0,0) € a N b, thatis, a }f b.

So in the general case, line a satisfies the system

(a1,a9,a1 X9 T,a3 Xo¥Y,a1 X9 T +9ay XaY,a1 X2 99.99 —5 ay X5 99.99 € W,
0 < |ai| <1,

0 < |az| <1,

a1 X9 a1 +92as X9 as < 2,

a1 X2 X +2a2 X2y +2a1 X2 99.99 —5 a2 X2 99.99 = 0.
Let us now consider several cases with specific values of a; and a,.

S1.

a; = 1,
ags = 0.50.
We get the equation of line ¢ in this case:

a:x+20.50 X2 y+299.99 —2 0.50 X2 99.99 =0,
that is,

a:x+20.50 X9y +250.04 =0.
We look for the intersection a N b, that is, the situation with x = y. For x = —33.36, we get

0.50 x2 y = —16.68.
Such y does not exist because

—0.50 x9 33.3x = —16.65
and

—0.50 x9 33.4x = —16.70
for any digit »€(0,1,...,9).

For x = —33.39, we get

0.50 x5y = —16.65



and

—0.50 x9 33.3x = —16.65
for any digit »€(0,1,...,9).

This means that

B(—33.39, —33.39) €Eanbd,
that is, in this specific case, a H b.

S2.

a; = 0.83,
as = 0.54.
We get the equation of line g in this case:

a:0.83 X9x+90.54 X9y +90.83 X9 99.99 —5 0.54 x5 99.99 = 0,
that is,

a:0.83 X9 & 9 0.54 Xo Y +2 28.98 = 0.
Direct calculation shows that C(—17.65, —26.75) € a because

0.83 x4 (—17.65) +450.54 x5 (—26.75) +9 28.98 = —14.59 —5 14.39 +, 28.98 = 0.
Also, we get

C € R,
Now we look for the intersection a N b, that is, the situation with & = y, if this intersection

exists. For x = y = —21.1x, we get

0.83 X3 (—21.1%) +2 0.54 x5 (—21.1x) +2 28.98 = —17.51 —5 11.39 +2 28.98 = 0.08,
and for z = y = —21.2x, we get

0.83 X9 (—21.2*) +90.54 x4 (—21.2*) 49 28.98 = —17.59 —5 11.44 445 28.98 = —0.05,
that is,

anNb=A.
Now we look for another point D € a that belongs to R}. Direct calculation shows that
D(—34.7x,—0.4%) € a because

0.83 X2 (—34.7%) +20.54 x 3 (—0.4%) +2 28.98 = —28.78 —3 0.20 +2 28.98 = 0,
and we get



Dec R}
This means that a Jf b.

Let us now consider a common situation with line a satisfying the system

A1,02,T,Y, A1 X9 T,03 XoY,a1 X9 T +9 a3 X9 Y,a1 X2 99.99 —3 as X 99.99 € Wy,
0<al < 1,
0<ag <1,
a1 X9 T +9as XoyY—+oaq X299.99 —5 ay X2 99.99 = 0.
Let us take the limiting values of a; and as.If a; = 0.99 and as; = 0.01, we get

a:0.99 X9 2 +50.01 X9y —+20.99 x5 99.99 —5 0.01 x5 99.99 = 0,
that is, we have points on line a:

(—99.9%, 99. xx) € a.
If a; = 0.01 and a3 = 0.99, then we get

a:0.01 X9z +420.99 X9y +20.01 X599.99 —5 0.99 x5 99.99 = 0,
that is, we have the same points on line a:

(—99.9x%,99. xx) € a.

If
(99.9%,99.9%) € a,
then
a; = ay,
and if
(99. x%,99. xx) € a,
then

a; = as € [0.01,0.02,...,0.09].
Now we look for possible coefficients a; and a, of the equation of line g in the case

(0, —99.99) € a.
This means that

ai X9 0 —9 Q9 X9 99.99 +9 a1 X9 99.99 —9 A9 X9 99.99 = 0,
that is,



a1 X299.99 —3 as xX299.99 —5 as x5 99.99 = 0.
We get by direct calculation the following pairs a1, as:

a; = 002,
as — 0.01,
a; = 0.04,



Let us consider the first case



The equation of line a is

0.02 X9z 49 0.01 X9y +90.02 X5 99.99 —5 0.01 x5 99.99 =0,
that is,

al :0.02 x5z +20.01 x5y +20.99 = 0.
Note that (—33.00, —33.00) € (a' N b). This means that a' }f b. Note that
(—33. %%, —33.%%) € al.

Let us consider the next case

a1 = 0.04,
as = 0.02.

The equation of line a is

0.04 X9z +20.02 %9 Y +2 0.04 x299.99 —2 0.02 x299.99 = 0,
that is,

a?:0.04 Xy 2 +50.02 X9y +51.98 = 0.
Note that (—33.00, —33.00) € (a® N b). This means that a J{ b. Note that
(—33. %%, —33.%%) € a’.

Let us consider the next case

a; = 0.06,
a9 — 0.03.
The equation of line a is

0.06 X9 x 42 0.03 X y+20.06 X5 99.99 —5 0.03 x5 99.99 = 0,
that is,

a®:0.06 X3z +20.03 X2y +22.97 = 0.
Note that (—33.00, —33.00) € (a® N b). This means that a® J{ b. Note that
(—33. %%, —33.%x%) € a’.

Let us consider the next case

a1 = 0.08,
ag = 0.04.
The equation of line a is



0.08 X9 +90.04 X y 442 0.08 X5 99.99 —5 0.04 x5 99.99 = 0,
that is,

a’:0.08 x32+20.04 xay+23.96=0
Note that (—33.00, —33.00) € (a* N b). This means that a* }f b. Note that

(—33. %%, —33.xx) € a®. Also, note that lines a®, a2, a®, a* coincide:

al :a2 :a3 :a4:a(1).

a; = 02,
ag = 0.1.

0.2 X9 +20.1 Xoy+20.2xX599.99 —5 0.1 x5 99.99 =0,

Let us consider the next case

The equation of line a is

that is,

a®:0.2x32 +20.1 X3y +29.99 =0.
Note that (—33.30, —33.30) € (a® N b). This means that a® }f b. Note that
(—33.3%, —33.3%) € a’. Also, note that a® C a(!) and a® # a(!) because
(—33.00, —33.00) ¢ a°.

Let us consider the next case

a1 = 0.22,
a9 = 0.11.
The equation of line a is

0.22 X9z +20.11 %o Y +2 0.22 x299.99 —2 0.11 x299.99 = 0,
that is,

a®:0.22 x5 +50.11 x4y +510.98 = 0.
Note that (—33.30, —33.30) € (a® N b). This means that a® J{ b. Note that
(—33.3x, —33.3%) € a®. Also, note that a% C a® and a® # a® because
(—33.00, —33.00) ¢ a®.

Let us consider the next case

a; = 0.24,
as = 0.12.



The equation of line a is

0.24 X9 +90.12 X9y +90.24 X5 99.99 —5 0.12 x5 99.99 = 0,
that is,

a’:0.24 X3 +20.12 x5y +2 11.97 = 0.
Note that (—33.30, —33.30) € (a” N b). This means that a” } b. Note that
(—33.3%, —33.3%) € a”. Also, note that a7 C a™ and a” # a! because
(—33.00, —33.00) ¢ a”.

Let us consider the next case

a; = 026,
ag = 0.13.
The equation of line a is

0.26 X9 +20.13 X2y +20.26 X2 99.99 —2 0.13 X2 99.99 = 0,
that is,

a®:0.26 X9z +50.13 X5y +512.96 = 0.
Note that (—33.30, —33.30) € (a® N b). This means that a® }f b. Note that
(—33.3%, —33.3%) € a8. Also, note that a® C a™ and a® # a! because
(—33.00, —33.00) ¢ a®.

Let us consider the next case

a; = 028,
as = 0.14.
The equation of line a is

0.28 X9 x +20.14 X5 y +2 0.28 x5 99.99 —5 0.14 x5 99.99 = 0,
that is,

a’:0.28 X3 2 +20.14 x5y +2 13.95 = 0.
Note that (—33.30, —33.30) € (a® N b). This means that a® }f b. Note that
(—33.3%, —33.3%) € a. Also, note that a® C a™ and a” # a! because
(—33.00, —33.00) & a°.

Let us consider the next case



a; = 04,
as = 0.2.

0.4 Xo & +2 0.2 Xo Y +2 0.4 X9 99.99 —9 0.2 X9 99.99 = 0,

The equation of line a is

that is,

a'®:0.4 x52 4202 x5y+219.98 = 0.
Note that (—33.30, —33.30) € (a'® N d). This means that a'® }f b. Note that
(—33.3x, —33.3%) € a'°. Also, note that o' € a™ and a'® # a() because
(—33.00, —33.00) ¢ a'°.

Let us consider the next case

a1 = 0.42,
a9 — 0.21.
The equation of line a is

0.42 X9 x 49 0.21 X9y +420.42 X5 99.99 —5 0.21 x5 99.99 = 0,
that is,

a1 0.42 X9 & 449 0.21 x5y 44 20.97 = 0.
Note that (—33.30, —33.30) € (a'! N b). This means that a'! }{ b. Note that
(—33.3x, —33.3%) € a'l. Also, note that a'! C a® and a'* # a® because
(—33.00, —33.00) ¢ a'l.

Let us consider the next case

a; = 0.4,
as = 0.22.

The equation of line a is

0.44 Xo X +2o 0.22 Xo Y +2 0.44 X9 99.99 —9 0.22 X9 99.99 = 0,
that is,

a'?:0.44 X9 & 42 0.22 X2y 42 21.96 = 0.
Note that (—33.30, —33.30) € (a'? N b). This means that a'? }{ b. Note that

(—33.3%, —33.3%) € a'2. Also, note that a'? C a(!) and a'? # a(!) because
(—33.00, —33.00) ¢ a'2.



Let us consider the next case

a; = 046,
az = 0.23.

The equation of line a is

0.46 X9 x 49 0.23 X9y 42 0.46 X5 99.99 —5 0.23 x5 99.99 = 0,
that is,

a’:0.46 X9 & 449 0.23 X5y 44 22.95 = 0.
Note that (—33.30, —33.30) € (a' N b). This means that a'® }{ b. Note that
(—33.3%, —33.3%) € a'®. Also, note that a'® € a™ and a'® # a() because
(—33.00, —33.00) & a'3.

Let us consider the next case

a1 = 0.48,
a9 — 0.24.
The equation of line a is

0.48 X9 x 49 0.24 X y 442 0.48 X5 99.99 —5 0.24 x5 99.99 = 0,
that is,

a?:0.48 X9 & 449 0.24 x5y 44 23.94 = 0.
Note that (—33.30, —33.30) € (a' N b). This means that a'* }{ b. Note that
(—33.3%, —33.3%) € a'. Also, note that a'* € a™ and a'* # a() because
(—33.00, —33.00) & a't.

Let us consider the next case
a; = 06,
Qa9 — 0.3.

0.6 X9 & 9 0.3 Xo Y +2 0.6 X9 99.99 —2 0.3 X9 99.99 = 0,

The equation of line a is

that is,

a®: 0.6 X2z +20.3 X9y +229.97 = 0.
Note that (—33.30, —33.30) € (a'® Nb). This means a'® }f b. Note that
(—33.3%, —33.3%) € a'®. Also, note that a'® C a!) and a'® # a(!) because



(—33.00, —33.00) & a's.

Let us consider the next case

a; = 062,
az = 0.31.
The equation of line a is

0.62 X9 x +90.31 X9y +20.62 X5 99.99 —5 0.31 x5 99.99 = 0,
that is,

a'®:0.62 x5z 45 0.31 X5y +2 30.96 = 0.
Note that (—33.30, —33.30) € (a'% N b). This means that a'® }} b. Note that
(—33.3%, —33.3%) € a'S. Also, note that a'% C a!) and a'® # a(!) because
(—33.00, —33.00) ¢ a'f.

Let us consider the next case

a1 = 0.64,
as = 0.32.
The equation of line a is

0.64 X9 x+50.32 X9 y+420.64 X5 99.99 —5 0.32 x5 99.99 = 0,
that is,

a'”:0.64 Xy x 49 0.32 x5y +231.95 = 0.
Note that (—33.30, —33.30) € (a'” N b). This means that a7 }{ b. Note that
(—33.3%, —33.3%) € a'". Also, note that a'” C a!) and a'” # a(!) because
(—33.00, —33.00) ¢ a'.

Let us consider the next case

a; = 066,
Q9 — 0.33.
The equation of line a is

0.66 X9 x 49 0.33 X9y +20.66 X5 99.99 —5 0.33 X5 99.99 =0,
that is,

a'®:0.66 x93z +20.33 X2y +232.94 = 0.



Note that (—33.30, —33.30) € (a'® N b). This means that a'® } b. Note that
(—33.3%, —33.3%) € a'®. Also, note that a'® C aV) and a'® # oY because
(—33.00,—33.00) & a'®.

Let us consider the next case

a; = 0.68,
az = 0.34.
The equation of line a is

0.68 X9 +90.34 X5 y+20.68 X3 99.99 —5 0.34 x5 99.99 = 0,
that is,

a'® 1 0.68 x5z 45 0.34 Xy +233.93 =0.
Note that (—33.30, —33.30) € (a' N b). This means that a'® }} b. Note that
(—33.3x, —33.3%) € a'®. Also, note that a'® C a® and a'® # a® because
(—33.00,—33.00) Z a'®.

Let us consider the next case
al = 0.8,
a9 = 0.4.

0.8 X9z +20.4 X9y +20.8x999.99 —5 0.4 x5 99.99 =0,

The equation of line a is

that is,

a? : 0.8 Xy & +90.4 X5y +539.96 = 0.
Note that (—33.30, —33.30) € (a?° N b). This means that a?® }{ b. Note that
(—33.3%, —33.3%) € a?. Also, note that a®® C a™ and a?® # a() because
(—33.00, —33.00) ¢ a?.

Let us consider the next case

a; = 082,
Q9 = 0.41.
The equation of line a is

0.82 X9 +90.41 X9y +420.82 X5 99.99 —5 0.41 x5 99.99 = 0,
that is,



a?:0.82 x5 +20.41 xoy+240.95=0
Note that (—33.30, —33.30) € (a®! N b). This means that a®! } b. Note that
(—33.3%, —33.3%) € a®'. Also, note that a®* C a!) and a?' # oY because
(—33.00, —33.00) & a?!.

Let us consider the next case

al; = 0.84,
ay = 0.42.
The equation of line a is

0.84 X2 x +20.42 X3y +20.84 x299.99 —2 0.42 X2 99.99 = 0,
that is,

a®:0.84 X9 449 0.42 X5y 4+ 41.94 = 0.
Note that (—33.30, —33.30) € (a®* N b). This means that a® } b. Note that
(—33.3%, —33.3%) € a?2. Also, note we have a?> C a() and a??> # a(!) because
(—33.00, —33.00) ¢ a*2.

Let us consider the next case

a; = 0.86,
a9 — 0.43.
The equation of line a is

0.86 X9 & +20.43 X5y +20.86 x5 99.99 —5 0.43 x5 99.99 = 0,
that is,

a®:0.86 X2 & +20.43 X9y +242.93 = 0.
Note that (—33.30, —33.30) € (a®® N b). This means that a® } b. Note that
(—33.3%, —33.3%) € a?. Also, note that a®* C aV and a?* # a(Y because
(—33.00, —33.00) ¢ a®.

Let us consider the next case

a; = 0.88,
az = 0.44.
The equation of line a is

0.88 xox +20.44 X2y +20.88 x299.99 —2 0.44 X2 99.99 = 0,



that is,

a?! 1 0.88 x5 @ 42 0.44 x5y +243.92 = 0.
Note that (—33.30, —33.30) € (a®! N b). This means that a?* }f b. Note that
(—33.3%, —33.3%) € a?%. Also, note that a®* C aV and a?* # oY because
(—33.00, —33.00) & a?.

Note that lines
a5,a6,a ,as,ag,am, - ,a20,a21,a22,a23,a24
coincide,
B =af=a’" =g =a% =gl = _ 20 g2 22 28
and

Now we look for possible coefficients a1, as in the equation of line a in the case

(99.99,0) € a.
This means

ai; Xo 99.99 +92 a9 X9 0 +92 a1 X9 99.99 —9 Q9 X9 99.99 = 0,
that is,

a1 X9 99.99 +9 a1 X9 99.99 —9 A9 X9 99.99 = 0.
By direct calculation we get the following pairs ai, as:

as = 0.02,
{a1 = 0.01,
az = 0.04,
{al = 0.02,
as = 0.06,
{a1 = 0.03,
as = 0.08,
{a1 = 0.04,
az = 0.2,
{al = 0.1,
az = 0.22,
{al =0.11,






The first four cases give us the same straight line o with equation

a® :0.01 x5 2 45 0.02 X9y +5 0.01 x5 99.99 —5 0.02 x5 99.99 = 0,
that is,

a® :0.01 x2 2 +20.02 X3y —20.99 = 0.
Note that (33.00, 33.00) € (a® N b). This means that a(®) }f b. Note that
(33. %%, 33.%%) € a®).

The remaining twenty cases give us the same straight line a (which differ from the first four

cases) with equation

a® 0.1 X2 4202 X5y +20.1 X599.99 —5 0.2 x5 99.99 = 0,
that is,

a®:0.1 Xo @ +90.2 X9y —99.99 =0.
Note that (33.30, 33.30) € (a® N b). This means that a(*) }f b. Note that
(33.3%,33.3%) € a and a® C a®, a® # a(® because (33.00,33.00) ¢ a¥).

Let us get back to the common situation with line g satisfying the system

'al,az,a},y,al X9 X,a2 X2Y,a1 X2 & +2a2 X2Yy,a1 X299.99 — as X299.99 € W,
0<a <1,

0<as <1,

al 750,2,

(a1 X2 & +3 a9 Xoy) +2 (a1 X299.99 —5 as X2 99.99) = 0.

Case 1. a1, as € [0.01,0.02,...,0.09]. Then

a1 X2 99.99¢ [0.99,1.98,2.97,3.96,4.95,5.94,6.93,7.92,8.91],
ag X9 99.99€ [0.99, 1.98,2.97,3.96,4.95,5.94,6.93,7.92,8.91],
and

a1 X2 99.99 —5 ay X 99.99 € [£0.99, £1.98, £2.97, £3.96, £4.95, £5.94, +6.93, £7.92].
For any x € W,

a1 X2 z€ [0.00,20.01, £0.02, . .., 20.99] U [0.00, 0.02, £0.04, . . ., +:1.98] U
U[0.00, ££0.03, £0.06, . . ., £2.97] U - - - U [0.00, £0.09, 0.18, . . ., +:8.91]
and for any y € W,



as X5 y€ [0.00, +0.01, +0.02, ..., +0.99] U [0.00, +£0.02, +0.04, . .., +1.98] U

u[0.00, +0.03, +0.06, . .., +2.97] U - - - U [0.00, +-0.09, +0.18, ..., +8.91].
Now let us prove that the lines

a: (a1 Xo T +29 a3 Xo y) +9 (al X9 99.99 —9 Qg X9 9999) =0
and

b:x—2y=0
are not parallel for a1, as € [0.01,0.02,...,0.09].

First, let us choose a; = 0.05 and a5 = 0.02. In this case,

a: (005 X9 & 49 0.02 X9 y) +9 297 = O,
and we get two sets of points B(—59. xx, —2. xx) C a and C(—39. x*x, —51. %) C a. We
also have B C Rg, CcC Rl{, thatis, a f b.

Let us make another choice: a; = 0.09, ay = 0.04. In this case,

a: (0.09 Xy x +20.04 X5 y) +24.95 =0,
and we get two sets of points D(—11. %k, —99. xx) C a and E(—51. xx, —9.xx) C a. We
also have D C Rl{ and E C RY, thatis, a I b.

The general case can be proved in the same way.

Case 2. Let a; € [0.01,0.02,...,0.09] and ay € [0.10,0.11,...,0.19]. Then

aj; X999.99 € [0.99, 1.98,2.97,3.96,4.95,5.94,6.93, 7.92, 8.91]
and

as X2 99.99 € [9.99,10.98,11.97,12.96,13.95, 14.94,15.93,16.92, 17.91, 18.90].
For any x € W,

a; X9 TE [0.00, +0.01, +0.02, ..., :|:O.99] U [0.00, +0.02, £0.04,..., :|:1.98] U
U[0.00, £0.03, 4+0.06, . .., +2.97] U - - - U [0.00,4+0.09, £0.18, . .., £8.91]
Also, for any y € Wa,

as X5 y€ [0.00, +£0.01, +0.02, ..., +0.09] U [+0.10, +0.11,...,+0.19] U. ..

U[+9.90,49.91,...,4+9.99]U... .
Now let us prove that the lines

a: (a1 X9 & +2 a2 X2 y) ) (a1 X2 99.99 —9 ag X9 99.99) =0



and

b:x —2 Y = 0
are not parallel for a; € [0.01,0.02,...,0.09] and a5 € [0.10,0.11,...,0.19].

First, let us choose a; = 0.05 and ay = 0.19. In this case,

a: (005 X9 & 9 0.19 X9 y) —9 13.95 = 0,
and we get two sets of points F'(47. xx,61.1x) C a and G(94. xx,51.1x) C a. We also have
F C Rg and G C R?, that is, alfb.

The general case can be proved in the same way.
Case 3. Let aj,as € [0.10,0.11,...,0.19]. Then

a; X999.99 € [9.99, 10.98,11.97,12.96,13.95, 14.94, 15.93,16.92,17.91, 18.90]
and

as X3 99.99 € [9.99,10.98,11.97,12.96,13.95,14.94,15.93,16.92,17.91, 18.90].
For any € W,

a; X9 z€ [0.00,40.01,+0.02,...,+0.09] U [+£0.10,£0.11,...,£0.19] U ...
U[£9.90,+9.91,...,+9.99]... .
Also, for any y € W,

as X5 y€ [0.00,4+0.01,40.02,...,4+0.09] U [£0.10,+0.11,...,+0.19] U...
U[£9.90,+9.91,...,£9.99]... .
Now let us prove that lines a, b are not parallel for a1, a2 € [0.10,0.11,...,0.19]. First, let

us choose a1 = 0.12 and as = 0.19. In this case,

a: (0.12 X9 +90.19 X9 y) —26.93 =0,
and we get two sets of points H(50.8%,4.9x) C a and I(10.2%,30.1x) C a. We also have
HC RI{ and I C R?, that is, ajfb.

The general case can be proved in the same way.

Case 4. Let a; € [0.01,0.02,...,0.09] and a2 € [0.20,0.21,...,0.99]. Then

ai X2 99.99 € [0.99, 1.98,2.97,3.96,4.95,5.94,6.93, 7.92, 8.91]
and



as X2 99.99 € [19.98,20.97,21.96, . ..,97.83,98.82].
For any « € W,

a1 x» z€ [0.00,20.01, £0.02, .. ., £0.99] U [0.00, £0.02, £:0.04, . .., +:1.98] U
U[0.00, £0.03, £0.06, . . ., £2.97] U - - - U [0.00, 20.09, £0.18, . . ., +:8.91].
Also, for any y € Wy,

as X5 y€ [0.00, +0.01, +0.02, ..., +0.09] U [+0.10, £0.11,...,4+0.19] U. ..

U[+9.90,49.91,...,4+9.99]U... .
Now let us prove that lines a, b are not parallel for a; € [0.01,0.02,...,0.09] and

az € [0.20,0.21,...,0.99].
First, let us choose a1 = 0.07 and as = 0.91. In this case,

a: (007 X9 +90.91 X9 y) —983.97 = 0,
and we get two sets of points J(18. xx,90.9x) C a and K (96. xx,84.9%) C a. We also have
J C Rg and K C R?, that is, alfb.

The general case can be proved in the same way.

Case 5. Let a1, a2 € [0.20,0.21,...,0.99]. Then

ai,as X2 99.99 € [19.98,20.97,21.96, ...,97.83,98.82].
For any x € Wy,

a1 X5 € [0.00,40.01,£0.02, . ..,+0.09] U [+0.10, £0.11,...,+0.19] U . ..

U[£9.90,+9.91,...,4+9.99]U... .
Now let us prove that lines a, b are not parallel for a1, a2 € [0.20,0.21,...,0.99]. First, let

us choose a1 = 0.27 and a2 = 0.91. In this case,

a:(0.27 x3 2 +2 0.91 x5 y) —3 63.99 = 0,
and we get two sets of points L(51.4%,55.1x) C a and M (61.1x,52.2x) C a. We also we
have L C Rg and M C R?, thatis, a }o.

The general case can be proved in the same way, as well as the general statement of the

theorem for any n.

Let us now prove now the following:

Theorem 6.15.



In the plane E;,W,,, there are a point A and a straight line b not containing this point such that
there is only one straight line a containing point A and parallel to line b: a || b.

Let us consider the situation with n = 2, that is, we are in EsW5. Let A(0,0.01) € E;W,.

Let straight line b have the equation

b:y=0.
So we get

RI{ : [(m,y) € EsWy iy > 0],

RY: [(a:,y) € EoWy iy < O],

R} = A.
We looking for a straight line o containing point A and parallel to straight line b. Because
A € R’ and we must have a || b, we get a C R}, that is, any point (z,y) € a must have
y > 0. This means that y > 0.01. So we have such straight line a:

a:y=0.01,
A€ a,a || b.
Let us consider another straight line a in EyWs:

a:0.01 xoy=0= f(x).
We get the set a as a subset of FoWs:

a = [(z,—0.99), (z,—0.98),..., (z,—0.01), (z,0), (z,0.01),.. ., (z,0.99)]
for any « € W,. Clearly, fully this set may be seen by any W,,,-observer with m > 7. The

function f is multivalued.

We get
A € a,
but
alfb
because

a>b, a#b.
Let us consider the transformation of parallel shift along the y-axis in EoWs:

y—y—21=g(y).
The superposition of the functions f and g is



and we get

y—,1=-0.99,
y—1=-0.98,

So we have

y =0.01,
y =0.02,

f(9(y)) =0.01 x5 (y—1) =0,



So we have to find out whether the set f(g(y)) represents the straight line

0.01 x5 (y—21) =0.
The answer is positive only if the solution of the equation

0.01 x,y=0.01
coincides with that of the equation

0.01 x5 (y —9 1) =0,
which is considered above. However, the solution of the former is

y=1
y =101,

y =198,
y =1.99.

This means that the set f(g(y)) does not represent a straight line, that is, the straight line

transformation of parallel shift along the y-axis in E3W5 may not represent a straight line.

So we continue the search of straight line a such that

Aca
and

al b
Let us continue to consider the situation with n = 2, that is, we are in E5W,. Let us first take
A(0,0.10) € E;W,. We look for a straight line a containing this point. We have

a:a1 X9 +9a9 Xoy+oaz3 =0
foranyal,aZ,a3,a:,y,a1 XoT,Ag X2Y,a1 X2 +209 XoY € W2 such that

(a1,a2) # (0,0) and

a1 X9 0 “+9 a9 X9 0.10 +9 a3 = 0.
This means that

az = —Qag X9 010,



and the equation of line a is

a:a1 X9 +9as X9y —9ay X90.10 =0.
Because generally two straight lines ¢ and d with equations

c:C1 XoX +9C2 Xoy—+9c3=0
and

d: —C1 X9 & —9 Co ng—263:0
coincide, without loss of generality, we may assume that as > 0 in the equation of line a.

Moreover, we must have 0.10 < as, because if 0 < a5 < 0.10, then

as X9 0.10 = 0,
and the equation of line a becomes

a:a1 X9 +9as XzyZO,
thatis, O(0,0) € a,and a }f b.

In the case a, = 1 the equation of line a becomes

a:ay X9 +2y—20.10=0.
For a1 = 0, we get

a:y—20.10=0,
and in this case, a || b because

R} : [(z,y) € E2W2:y—20.10 > 0],
RS : [(z,y) € E;W5 1y —50.10 < 0],
R3 = A,

and b C Rj.

Let us rename this straight line a as straight line c. In the case as = 0.10 the equation of line

a becomes

a:a] X9 +9 0.10 X9 Y —2 0.01 = 0.
For a; = 0, we get

a:0.10 X5 4 —3 0.01 = 0,
and in this case, a || b because



R} : [(z,y) € E2W2:0.10 X2y —2 0.01 > 0],
RS : [(z,y) € E3W5:0.10 X9y —2 0.01 < 0],
R} = A,

and b C R{. This means that

a:alUa2Ua3Ua4Ua5Ua6Ua7Ua8UaQUalo,

where straight lines a!, a?, a3, a*, a®, a®, a”, a8, a?, a'” have the equations

[

a :y=0.10,
a?:y=0.11,
a®:y=0.12,
a*:y=0.13,
a’® : y=0.14,
ab: y=0.15,
a’ :y=0.16,
a®:y=0.17,
a’ : y=0.18,
ot y=0.19.

Let us rename straight line g as straight line d. We get

cCd
and

c#d.
This means that for the chosen point A and straight line b, there are at least two distinct

straight lines a containing point A that are parallel to line b.

Let us now get take A(0,0.01) € E2W5. We look for a straight line a containing this point.
We have

a:a1 X2 +2a2 X2y+2a3=0
for any a1, a2,a3,x,y,a1 X2 x,a2 X2yY,a1 X2 & +2 a2 X2y € Wa such that

(a1,a2) # (0,0) and

a1 X20+92a3 Xx20.01 +2a3 = 0.
This means that

az = —ag X2 0.01,



and thus the equation of line a is

a:ai X9 +9a9 Xoy —9as X90.01 =0.
Let line b have the equation

b:y=0.
So we get
RY: [(z,y) € EaWy 1y > 0],
Rg : [(zc,y) € EaWy iy < 0],
RS = A.
Because A € Rl{ and we must to have a || b, we get a C R?, that is, y > 0 for any point
(z,y) € a.This means that y > 0.01.

Because generally two straight lines ¢ and d with equations

c:c1 Xox +oc2 Xoy—+a2c3 =0
and

d: —C1 X2 —9 C2 ><2y—263:0
coincide, without loss of generality, we may assume that a2 > 0 in the equation of line a.

Moreover, we must have 1 < as, becauseif 0 < a2 < 1, then

as X9 0.01 = 0,
and the equation of line a becomes

a:a; X2« +2a3 X2y =20,
thatis, 0(0,0) € a,and a }f b.

In the case az = 1 the equation of line a becomes

a:a; X2x+2y—20.01 =0.
For a; = 0, we get

a:y—20.01=0,
and a || b in this case, because

Rtll : [(m,y) € By W, - y—20.01 > 0},

Rg : [(a:,y) e EoWs Y —2 0.01 < 0},
RS = A,



and b C R3.

Assuming that a; # 0, we consider four limiting cases: a; = 0.01, a; = —0.01, a; = 99.99,
a; = —99.99.

For a; = 0.01, we get

a:0.01 Xo T +9Y —2 0.01 =0.
For z = 99.99, on this line, we get y = —0.98, that is, in this case, a }f b.

For aq; = —0.01, we get

a: —0.01 Xo& +2Y—2 0.01 = 0.
For z = —99.99, on this line, we get y = —0.98, that is, in this case, a } b.

For a; = 99.99, we get

a:99.99 X9 x 45 Y —2 0.01 =0.
For z = 0.01, on this line, we get y = —0.98, that is, in this case, a }f b.

For a; = —99.99, we get

a:—99.99 XoZ +o2Y—2 0.01 =0.
For £ = —0.01, on this line, we get y = —0.98, that is, in this case, a H b.

So we must have a; = 0, that is,

a:y—20.01=0,
and in this case, a || b.

In the other limiting case ay = 99.99 the equation of line a becomes

a:a; X9 +9299.99 x5y —50.99 =0.
For a1 = 0, we get

a:99.99 X,y —50.99 =0.
This line coincides with line

a:y—20.01 =0,
and in this case, a || b.



Assuming that a; # 0, we consider four limiting cases: a; = 0.01, a; = —0.01, a; = 99.99,
a1 = —99.99.

For a; = 0.01, we get

a:0.01 X9 +999.99 x5y —20.99 =0.
For z = 99.99, on this line, we get y = 0, that is, in this case, a }f b.

For a; = —0.01, we get

a:—0.01 Xo X +2 99.99 X9 Y —2o 0.99 = 0.
For z = —99.99, on this line, we get y = 0, that is, in this case, a }f b.

For a; = 99.99, we get

a:99.99 Xo & 9 99.99 X9 Y —2 0.99 = 0.
For z = 0.01, on this line, we get y = 0, that is, in this case, a H b.

For a1 = —99.99, we get

a:—99.99 X9z +999.99 x5y —50.99 = 0.
For z = —0.01, on this line, we get y = 0, that is, in this case, a H b.

So we must have a; = 0, that is,

a:99.99 X,y —50.99 = 0.
This line coincides with line

a:y—20.01 =0,
and in this case, a || b.

Note this is the same line as that in the first limiting case a; = 1. So the theorem is proved

for n = 2. The general statement of the theorem for any n may be proved in the same way.

Let us make a very important note. Let us consider the equation

0.1 xo (y —9 0.1) = 0.
Its solution is the set

y—20.1= [0.00, +0.01, £0.02,..., :|:0.09],
that is,



y = [0.10,0.10 £+ 0.01,0.10 + 0.02,...,0.10 + 0.09].
The solution of this equation is the following set of straight lines:

y= 0.19,
y= 0.18,
y= 0.10,
y= 0.09,
y= 0.01.

Soif

0.1 X9 (y —9 01) =0
is the equation of a straight line, then we would have had at least two different lines

containing point A and parallel to line b. However,

0.1 X9 (y —9 01) =0
is not an equation of a straight line.

Let us now prove the following:

Theorem 6.16.
In the plane EsW.,, there are a point A and a straight line b such that A ¢ b and there is more
than one straight line that contains the point A and is parallel to line b: a || b.

Let us first consider the case n = 2, that is, we are in a = EyWs.

1) Let the equation of straight line a be

y = —0.01,
and let two regions R{, R of plane a be

R} = [(z,y), (z,y) € E2Wa,y > —0.01]
and

R = [(z,y), (z,y) € E2Wa,y < —0.01],
where x is any element € Ws. So

E2W2 = Rtll UaU Rg
Let us take two points

A(—99.99,0.00), B(0,99.99) € R?.



We look for a straight line b as the set of points (i, y) satisfying the equation

a3 Xo & +2a3 Xay+sa3 =0
and containing points A, B. We have

{—al X9 (9999) +9 ag X9 (000) +92a3 = 0,
aip X9 (0) +92 a2 X2 (99.99) +2 a3 =0,

that is,
{—a1 X9 (9999) +o a3 = 0,
as X9 (9999) +9 a3 = 0.

For

a2 =1,
we get

al = -1
and

as = —99.99,

and the equation of line b is

b:y=x+299.99 =0.

We have
b C RY,
SO
bnN Rg = A,
and
bNa=A
We have

Ry=[(2,), (z,y) € BExWa,y =z +299.99 > 0],

RY=[(2,y), (z,y) € EsWa,y =z +5 99.99 < 0],
with any —99.99 < z <0, and

anRS = A,
b
anNRy # A.
So line ¢ is parallel to line b, and line b is parallel to line g, thatis, a || b and b || a.



Also, line ¢ with equation

c:y=-+299.99=0
is parallel to line o and contains points 8 and A’(99.99, 0.00). So line a is parallel to line c,
line c is parallel to line g, that is, a || ¢ and ¢ || a. Moreover, b N ¢ = (0,99.99) = B, that is,
b }f c. This means that in a plane « = E3;W5, through point B lying outside of a straight line

a, there can be drawn at least two distinct straight lines b and c that are parallel to line a.

1) Let A(0,1) € E;W,, and let b be a straight line with equation

b:y=0.
Then
RY: [(z,y) € BoW, 1y > 0],
R} : [(z,y) € E2Wp 1y < 0],
R} = A,
and A € b.

Let us consider two straight lines

al 0.0l X9z —5y+21=0
and

a?:y—51=0.

We can see that A € a', A € a®,and a' C R, a® C R?. Also, we have
R‘fl : [(w,y) € EsW5:0.01l Xox —9y—+91> 0},
RSI : [(:L',y) € EsWy:00l Xgx —y+21< 0},
RY = A,
R‘fZ (2, y) € EsWa iy > 1]
RS [(z,y) € BaW3 1y < 1],

2

g = A’
and



bC RY,

bC RY,
bna! = A,
bna? = A.

This means that a’ || b, a® || b, b || a', and b || a2, and we have proved the theorem for

n = 2.
The general statement of this theorem for any n can be proved in the same way.

So we have proved the following main theorem on parallel lines in Mathematics with

Observers geometry.

Theorem 6.17.
In the plane E2W,, there are a point A and a straight line b such that A ¢ b and we have possible
three different situations:

1. There is only one straight line a that contains point A and is parallel to line b

(Euclidean geometry case).

2. There is more than one straight line a that contains point A and is parallel to line b

(Gauss-Bolyai-Lobachevsky geometry case).

3. Any straight line a containing point A is not parallel to line b (Riemann geometry

case).

This means that the same plane has couples (a point and a straight line not containing this
point) where Euclidean geometry works, couples where Gauss-Bolyai-Lobachevsky

geometry works, and couples where Riemann geometry works.



7 Observability and properties of congruence analysis

Let us now consider the definition of segments congruence in Mathematics with Observers

geometry. For EoW,,, let us first consider four points

A(mla y1)7 B($2a yQ)a A/(:Bg, y3)7 B/(ZB4, y4) € EsWy.
Points A, Bor A, B’ do not necessarily lie on existing straight lines. For these points, we have
the corresponding vectors

a=(z1,y1),b = (z2,92),a = (x3,y3),b’ = (z4,y4) € EsW,,.
Let us consider two vectors in EoW,,:

AB: b —pa= (mQ —n 331,y2 n yl)’
A'B'=b' —,a" = (x4 — 3,914 —1 ¥3)
and the scalar products

(ABaAB): ($2 —n m1) Xn (.’152 —n .’131) +n (y2 -n yl) Xn (y2 -n y1)7

(A'B',A'B')= (24 —n 23) Xn (T4 —n 3) +n (Y4 —n Y3) Xn (Y4 —n y3)
if

Ty —p T € Wy,

Y2 —n Y1 € Wn,
Ty —nx3 € Wy,
Ysa —n Y3 < Wm

(z2 —n x1) Xn (T2 —n 1) € W,
(g —n x3) Xp (T4 —n T3) € Wy,
(Y2 —n Y1) Xn (Y2 —n Y1) € Wy,
(
(

~— —

Ya —n Y3) Xn (Y4 —n y3) € Wy,

Ty —pn T1) Xn (T2 —n 1) +n (Y2 —n Y1) Xn (Y2 —n Y1) € Wi,

(4 —n23) Xp (T4 —n T3) +0n (Y4 —n Y3) Xn (Y4 —n y3) € Wy
In Mathematics with Observers geometry, we say that segment AB is congruent to segment
A'B’,denoted AB = A'B', if

~—

(AB,AB) = (A'B’,A'B’) > 0.
Now let us go to the situation where points A, B and points A’, B’ are points of existing straight
lines.

For E,W,, let straight line a have the equation

a1 Xp T+, a2 Xny+na3:()



and points

A(wla yl)a B(m2, y2) € a.
Let the equation of straight line a’ be

bl ><nw—'_an ><ny'i'nb3 - 07
and let

A'(z3,y3), B'(z4,y4) € d'.
Let us consider two vectors in FoW,,,

AB = (.’132 —nL1,Y2 —n yl)
and

A'B' = (24 —p 3,Yy1 —n y3)
and scalar products

(AB,AB) = (:EQ —n xl) Xn (332 —n $1) +n (y2 -n yl) Xn (yZ —n yl)
and

(A/Bl7A,B/) = (.’134 n 1133) Xn ($4 n m3) +n (y4 n y3) Xn (y4 n y3)
if

Ty —nx1 € W,

Y2 —n Y1 € Wm
Ty —px3 €W,
Y4 —n Y3 S Wn,

(T2 —n ®1) Xy (T2 —n T1) € Wy,
(x4 —n 3) Xp (T4 —n x3) € Wh,
(Y2 —ny1) Xn (Y2 —n Y1) € W,
(Ys —n ¥3) Xn (Y4 —n y3) € Wy,
(T2 —n 1) Xn (T2 —n 1) +0n (Y2 —n Y1) Xn (Y2 —n Y1) € Wh,

(4 —n®3) X (T4 —n 3) +n (Y2 —n Y3) Xn (Y2 —n Y3) € Wi
In Mathematics with Observers geometry, we say that segment A B of straight line a is

congruent to segment A’ B’ of straight line a’, denoted AB = A'B’, if

(AB,AB) = (A'B’,A'B’) > 0.
For E3W,, first, let us consider four points

A(xla Y1, 21), B(x27y27 22), A,(ZB3, Y3, Z3)7 B,(ZB4, Y4, Z4) S ESWn-



Points A, B or points A’, B’ are not necessarily points of existing straight lines. For these points,

we have the corresponding vectors

a= (331,y1,Z1),b = ($27y2322)’a, - (£3’y3az3)7bl — (304,11/4,24) S E3Wn-
Let us consider two vectors € E3W,,,

AB=b—pa= (23 —nZ1,¥2 —n¥1,22 —n 21)
and

A'B'=b' —pa' = (24 —n 23,Y1 —n Y3, 24 —n 23)
and scalar products

(AB,AB) = (-’L’z —n 371) Xn (502 —n 301) +n (yz ) yl) Xn (y2 —n yl) +n (22 —n Z1) Xn (Z2 :
and

(A,Bla A,Bl) - ($4 -n $3) Xn (1'4 —n .’1,‘3) +n (y4 —n y3) Xn (y4 -n y3) +n (24 -n Z3) Xn (
if

Ty —n T1 € Wh,

Y2 —n Y1 € Wy,

Z2 —n 21 € Wna

r4 —nx3 € W,

Y4 —nyYs3 € Wna

(T2 —n 1) X (T2 —p 1) € Wy,

(T4 —n 23) Xn (T4 —n T3) € Wy,

(y2 —n Y1) Xn (Y2 —n y1) € Wh,

(Ys —n Y3) Xn (Ys —ny3) € Wy,

(22 —n 21) X (22 —n 21) € Wy,

(24 —n 23) Xn (24 —n 23) € Wh,

(T2 —n ®1) Xp (T2 —n 1) +0 (Y2 —n Y1) Xn (Y2 —n Y1) +n (22 —n 21) X0 (22 =0 21) € W,
(T4 —n ®3) X0 (T4 —n 3) +n (Y4 —n Y3) Xn (Y4 —n Y3) +n (24 —n 23) Xn (24 —p 23) € W,

In Mathematics with Observers geometry, we say that segment A B is congruent to segment
A'B' denoted AB = A'B, if

(AB,AB) = (A'B’,A'B’) > 0.
Now let us go to the situation where points A, B and points A’, B’ are points of existing straight
lines. For E3W,, let straight line a have the system of equations



{afl Xp & +5 a2 Xp Y+, as an+na4207
bl an‘i‘an Xny+nb3 an+nb4:07
and let

A(z1,91,21), B(z2,y2,22) € a.
Let straight line a’ have the equation

{cl Xn & +nC2 XnlY+nC3 an+nc4:07
dl Xnm+nd2 xny+nd3 an+nd4:0,
and let

/! / !/
A'(z3,Y3,23), B'(T4,Y4,24) € a.
Let us consider two vectors in E3W,,

AB = (m2 —nL1,Y2 —nY1,22 —n Zl)
and

'/
A'B' = ($4 —nT3,Y4 —nlY3,%4 —n 253)
and scalar products

(AB,AB) = (932 —n wl) Xn (mZ —n wl) +n (y2 —n yl) Xn (y2 —n yl) +n (22 —n Zl) Xn (Z2 ;
and

(A'B',A'B’) = (24 —n #3) Xn (4 —n ©3) +n (Y4 —n Y3) Xn (Y4 —n ¥3) +n (24 —n 23) Xn (
if

zy —p 1 € Wy,

Y2 —n Y1 € Wy,

29 —n 21 € Wh,

Ty —n T3 € W,

Ys —n Y3 € Wy,

(Tg —p T1) X (T2 —p 1) € Wy,

(g —n 23) X (T4 —n T3) € Wy,

(y2 —n yl) Xn (y2 —n yl) € Wi,

(Y4 —n Y3) ¥n (Y2 —n y3) € Wi,

(22 —n 21) Xp (22 —n 21) € Wy,

(24 —n 23) Xn (24 —n 23) € Wy,

(T2 —n 1) Xn (T2 —n T1) +0 (Y2 —n Y1) Xn (Y2 —n Y1) +n (22 —n 21) Xn (22 —n 21) € Wy,
(24 —n x3) Xpn (T4 —n 3) +n (Ya —n Y3) Xn (Y4 —n y3) +n (24 —n 23) Xn (24 —p 23) € W,



In Mathematics with Observers geometry, we say that segment A B of straight line a is
congruent to segment A’ B’ of straight line a’, denoted AB = A'B' if

(AB,AB) = (A'B’,A'B’) > 0.
Let now consider the definition of congruence of angles in Mathematics with Observers

geometry. Let us first define the angle formed by three points A, B, Cin EsW,, or EsW,,.

For E5W,, let us first consider three points

A(z1,y1), B(z2,92), C(w3,y3) € EaW,.
Points A, B, points A, C, or points B, C are not necessarily points of existing straight lines. For these

points, we have the corresponding vectors

a= (zlayl)ab = (m2ay2)’c = (m3ay3) € EZWn
Let us consider three vectors in EoW,,,

AB=b —,a= (:L'Z —nZ1,Y2 —n yl)a

BA— —AB,
AC=c —pa= (-’133 “nTLY3 T yl)a
CA=-AC,
BC: C—p b = (w3 —nL2,Y3 —n y2)7
CB= -BC.

The system formed by two vectors AB, AC we call an angle / BAC'. The system formed by
two vectors BA, BC we call an angle ZABC'. The system formed by two vectors CA, CB we
call an angle ZACB.

Let us consider the scalar products

(AB,AB): (172 n wl) Xn (:Bg —n 331) +n (y2 n yl) Xn (y2 —n y1)7
(AC,AC)= (23 —n 1) Xn (3 —n 1) +n (Y3 —n Y1) Xn (¥3 —n Y1),
X

(AB,AC)Z (902 —n «’El) Xn (533 —n iBl) +n (y2 —n yl) n (y3 —n yl)-
We now assume that



To —p 1 € W,

Y2 —n Y1 € Wh,
z3 —p 1 € Wy,
Y3 —n Y1 € Wiy,
I3 —n T2 € Wna
Y3 —n Y2 € Wy,

(g —p 1) Xy (Ty —p 1) € W,
(Y2 —n Y1) Xn (Y2 —n y1) € Wy,
(23 —n 21) X0 (T3 —n 1) € Wy,
(Y3 —n ¥1) Xn (Y3 —n Y1) € Wh,
(T2 —n 1) Xn (T2 —n 1) +0n (Y2 —n Y1) Xn (Y2 —n Y1) € Wh,
( Xn (23 —n 1) +n (Y3 —n Y1) Xn (Y3 —n Y1) € Wi,

(2 —n21) Xp (T3 —n T1) +0n (Y2 —n Y1) X0 (Y3 —n Y1) € Wy
Let us consider three other points

)
T3 nxl)

/ / / / !/ /
A'(z,9h), B' (24, y3), C' (5, y3) € EsW,.
For these points, we have the corresponding vectors
a/ = (wllayi)ab/ = (wIZayIZ)7C/ = (wg’,ayg’,) € EQWn
Let us consider three vectors in EoW,,

A-,BI: b, —n a, - (mlz —n ml17y,2 n y,1)7

BIAI: _AIBI
A'C'=¢ n a' = (xlg —n 33,1724{9, n yll)a
C/Al: —AIC/,
B,C,: C, n b’ = (wg n wéayg’, n y,2)a
C'B'= -B'C'.

The system formed by two vectors A’B’, A'C’ is called the angle /B’ A'C". The system
formed by two vectors B’A’, B'C’ is called the angle ZA’'B’'C’. The system formed by two
vectors C'A’, C'B’ is called the angle ZA'C'B'.

Let us consider the scalar products

(A B’ A,B,): ( —n 93,1) Xn (xlz —n wll) +n (y,2 —n y,l) Xn (?/2 —n yll)a
(A CI A C,): ( —n mll) Xn (fBg n xll) +n (yé n y,l) Xn (yg n yll),
(A B/ A C/): ( n 3:,1) Xn (l'é, n xll) +n (y/2 n yll) Xn (yg’, n yll)

We assume that



Y3 —n Yo € Wy,

(a:'2 n ml) (:c'z —n w'l) e Wh,

(mg n acl) X (mg —n :Bl) e W,,

(¥y —n y1) Xn (¥ —n y1) € Wy,

(yg n yl) Xn (y;, —n yl) € Wh,

(2 —n 1) Xn (25 =0 21) +a (42 —n ¥1) Xn (¥2 —n ¥1) € Wa,
(23 —n 1) Xn (23 =0 1) +0 (Y5 —n Y1) Xn (Y3 —n ¥1) € Wa,
(117/ n 371) n (37;, —n 331) +n (ylz —n y/1) Xnp (Z/3 —n y1) € Wy.

In this case, we say that ZBAC is congruent to /B’ A’C" and write

/BAC = /B'A'C'
if the following conditions are satisfied:

(AB,AB)> 0,
(A'B',A'B’)> 0,
(AC,AC)> 0,
(A'C',A'C')> 0,
(AB,AB)= (A'B',A'B’),
(AC,AC)= (A'C',A'C'),
(AB,AC)= (A'B’,A'C’).

Let us now go to E'3W,, and consider three points

A(z1,y1,21), B(z2, Y2, 22), C(23,y3, 23) € EsWy.
Points A, B, points A, C, or points B, C are not necessarily points of the existing straight lines. For
all these points, we have the corresponding vectors

a=(z1,y1,21),b = (22,92, 22), ¢ = (x3,y3, 23) € E2W,.
Let us consider three vectors € E3W,,



AB=b —a=(z2 —n *1,92
BA— _AB,
AC=c—pa= (23 —nT1,¥3
CA= —AC,
BC=c —n b= (wg —n X2,Y3
CB= —BC.

—nY1,22 Tn Z1)7
—nY1,23 —n 21),

—nY2,23 —n Z2),

The system formed by two vectors AB, AC is called the angle /BAC. The system formed by
two vectors BA, BC is called the angle ZABC. The system formed by two vectors CA, CB is

called the angle ZACB.

Let us consider the scalar products

(AB,AB)= (22 —p 1) Xn (22
(AC,AC)= (z3 —nz1) Xp (T3 —n 1) +n (Y3 —n ¥1)
(AB,AC)= (22 —n 1) Xn (3 —n Z1) +n (Y2 —n ¥1)

We now assume now that

Ty —pn 1 € Wy,
Y2 —n Y1 € Wh,
zg —n 21 € W,
z3 —p 21 € Wy,
Ys —n Y1 € Wh,
z3 —n 21 € W,
x3 —p T2 € Wy,
Y3 —n Y2 € Wh,
z3 —n 22 € Wh,
(g —p 1) Xp (22

(y2 —n Y1) Xn (2

—n ml) € Wna
- n yl) S Wn,

—n "171) +n (y2 —-n yl) Xn

(y2 —n Y1) +n (22 —n 21) Xn (22 -

Xn (y3 —n yl) +n (23 —n Z1) Xn (Z3 -
Xn (y3 n yl) +n (z2

-n zl) Xn (2:3 -

(22 —n 21) Xn (22 —p 21) € W,

(x3 —n 1) Xn (x3 —n @1) € Wh,

(Y3 —n Y1) Xn (Y3 —n Y1) € Wy,

(23 —n 21) Xn (23 —n 21) € Wy,

(x2 —n 1) Xn (T2 —n @1) +n (Y2 —n Y1) Xn (Y2 —n Y1) +n (22 —n 21) Xn (22 —n 21) € Wy,
(3 —n 1) Xn (T3 —n T1) 0 (Y3 —n Y1) Xn (Y3 —n Y1) +n (23 —n 21) Xn (23 —n 21) € Wy,
(T2 —n 1) Xn (B3 —n T1) 0 (Y2 —n Y1) Xn (U3 —n Y1) +n (22 —n 21) Xn (23 —n 21) € W,

Let us consider three other points

A’(m’l,yll,zll),B’(m’z,yg,z’z),C'(wg,yg,zg) e EsW,,.

For these points, we have the corresponding vectors



! !/ / ! ! ! !/ !/ ! !/ / !
a — (a:l,yl,zl),b = ($2,y2,22),c = (503,y3,z3) e EsW,,.
Let us consider three vectors in E3W,,:

! ! / / 1o 1o /
A'B=b —na = ("132 “nTH Y2 Tn Y1y 22 _nzl)’

B'A'— _A'B’,
A'C'=c' —pa' = (25 —n 2}, ¥5 —n Y1, 25 —n 21),
C'A'=—-A'C

- )
B'C'=c n b’ = (932), n 77,2’yl3 n yl27 zl3 n Z,2)’
C'B'=-B'C’

The system formed by two vectors A’B’, A'C’ is called the angle /B’ A’C’. The system
formed by two vectors B’A’, B'C’ is called the angle /A’ B’'C’. The system formed by two
vectors C'A’, C'B’ is called the angle ZA'C'B'.

Let us consider the scalar products

(A'B',A'B') = (2} —n 21) Xn (@b —n 1) +0n (U5 —n ¥1) Xn (U5 —n ¥1) +n (2
(A'C,A'C) = (z3 —n 21) Xn (T3 —n 1) +n (Y5 —n ¥1) Xn (U5 —n 91) +n (25
(AIBI,AIC’) = (:BIZ —n .’Bll) Xn (iEg —n xll) +n (y; n yll) Xn (yé n yll) +n (zl2
We assume that

A

—n zl)

A

—n zl)

A

—n zl,



Y3 —n Y2 € W,

2y —n 29 € W,

(2 —n o)) Xy (2 —n @) € Wy,

(25 —n 1) Xn (25 —n 1) € W,

(vo —n ¥1) Xn (¥ —n ¥1) € W,

(45 —n ¥1) Xn (Y5 —n y1) € Wa,

(2 —n 21) Xy (25 —n 21) € Wy,

(zg —n z’l) Xn (zé —n zl) e Wy,

(2 —n 21) X0 (22 =0 21) +a (Y2 =0 91) X (Y2 —n Y1) +n (22 —n 21) Xn (25 —n
(25 —n 21) Xn (25 —n 21) +n (Y5 —n ¥1) Xn (Y5 —n 1) +n (25 —n 21) Xn (25—

—n 251)
(1',2 ~n wll) Xn (wg’) —n 33/1) +n (yIZ —n yll) Xn (yé ~n y,l) +n (22 ~n 21) ( —n Zl)

In this case, we say that ZBAC is congruent to Z/B’'A’'C’, denoted /BAC = /B'A'C’, if the
following conditions are satisfied:

(AB,AB)

(A'B’,A'B)

(AC,AC)
(A'C’,A'C

(AB,AB)

)

)

Y
Y

Y

0
0
0
0,
(
(

vV V. V V

A'B',A'B’ ) ,

(AC,AC)= (A'C',A'C'),

(AB,AC (A’B’, A’C’).
Now we have to define the angle between two straight lines. By classical geometry definition we
have the following definition:

IfA, A, 0, B are four points of a straight line a in E2W,, or EsW,, where O lies between A and B
but not between A and A’, then this means the following: The points A, A’ are situated on the

line o upon one and the same side of the point O, and the points A, B are situated on the straight



line a upon different sides of the point O. All the points of a that lie upon the same side of O,

when taken together, are called the half-ray emanating from O.

Let us now consider two distinct straight lines a, b in E;W,, or E3W,, having at least one point
O in their intersection: O € a N b. Note that generally there may be more than one such point.
By classical geometry definition we have the following: Let h, k be any two distinct half-rays

h C a and k C b emanating from the point O. The system formed by these two half-rays h, k is
called an angle and denoted by Z(h, k) or Z(k, h).

The half-rays h and k are called the sides of the angle, and the point O is called the vertex of the
angle. Now we can go to the definition of congruence of angles in Mathematics with Observers

geometry. Let us start with EoW,,.
Let a,b € E;W,, be two straight lines

a:a1 Xpn T+, Xpy+ya3=0
and

b:bl Xn$+nb2 Xny+nb3 =0
having common point O(z, yo). Let h, k be two distinct half-rays A C a and k C b emanating
from the point O. So we get Z(h, k).

Suppose we also have two straight lines in £y, W,

! !/ !/ !
a :a; Xpn T+, XpY+ya3 =0
and

b’:b’l xnw+nb/2 xny—i-nbg =0
having common point O’(zg, y; ). Let h', k' be any two distinct half-rays b’ C a’ and k' C b’
emanating from the point O’. So we get Z(h’, k'). Let

O(JJ(), yO)a Ol (.’136, yé))

and suppose we have four points

and the corresponding vectors



OA= (z1 —pn 20,¥1 —n Y0),
OB= (2 — Z0,Y2 —n Y0),
O'A'= (2] —n 20, Y1 —n Yo),
OIB,_ (wl2 n x6>y12 n y6)7
such that
(OA,0A)>
(OB,0B)>
(O'A',0'A")>
(0O'B’,0'B’)>
and

(OA,0A)= (O'A’,0'AY),
(OB,0B)= (O'B’,0'B/).

Let us take the scalar products

(OA OB): ( 1™ n CL‘()) Xn (:132 —n :170) +n (yl n yO) Xn ( n yO)
Yo

(OA’OB) ( nmg) xn(mg—nmf))—i—n(y’l—nyg)x (

)

If

(OA,0B) = (O'A',O’B'),
then we say that

/AOB = /(Ah, Bk)

is congruent to

LA'O'B' = Z(A'M,B'K)
and write

Z(Ah, Bk) = 4(A'h',B’k').
We assume here that all elements participating in the previous equalities belong to W,,. This
means that in Mathematics with Observers geometry, we do not define the congruence of angles
Z(h,k) and Z(h', k). We can define it only in the case where for any points A, B, A’, B
satisfying the above conditions, we have

L(Ah, Bk) =/ (A'h', B’k') .
Then

Z(h,k) = Z(h’, k').
Let us now go to F3W,,. Let u, v be two straight lines lying in plane q,



u:
{al Xn T +n a2 Xn Y +n03 Xn2+nag =0,
by Xpn T +p ba xny+nb3 Xn 2z+nbsy =0,
and

v
{cl Xpn & +nC XpnlY+nC3 an+nc420a

dl an+nd2 xny+nd3 an+nd4 :07
having common point O(z, yo, 20)-

Let h, k be two distinct half-rays h C v and £ C v emanating from the point O. So we get

Z(h, k). Suppose we also have two straight lines u’, v’ lying in plane o/,

/

u
{a'l X @ 4n @y Xy Y4y 05 Xp 2+, ay =0,
/ / !/ !
bl Xpn T +p by Xpy+pby Xy 24,0y =0,
and
v

/ /
XpY+nC3 Xp2+pcy =0,

{c’l X & 4 Ch
XnY+nds Xpz+,d), =0,

dy X+, d,
having common point O'(zg, ¥y, 2)-

Let A/, k' are any two distinct half-rays A’ C a’ and k' C b’ emanating from the point O’. So we
get Z(h', k). Suppose we also have four points

A(z1,y1,21)€
B(xa,y2,22)€
A (z}, 91, 21) € h’
B'(z3,v5, 25) € K’

and the corresponding vectors

OA= (21 —n Z0,Y1 —n Y0, 21 —n 20),

OB= (23 —n 0, Y2 —n Y0s 22 —1n 20)s
O'A'= (37,1 n mé)vyll n y67ZI1 —n? )7
O,B/ (xIZ n x67y12 n y67212 - )

such that



(OA,0A)> 0,
(OB,0B)> 0
(O'A’, O'A') > 0,
(O'B’,0'B’)> 0
and
(OA,0A)= (O'A’, O'A'),
(OB, 0B)= (O'B’, O’B').
Let us take the scalar products
(OA, OB) - (ml —n mO) Xn ("1:2 —n "EO) +n (yl —n yO) Xn (y2 —n yO) +n (21 —n R
(O'A",0'B) = (& —n 24) xn (&5 —n 26) +n (v —n 85) Xn (v —n 9) +a (4 —n
If we have
(OA,0B) = (O'A’, O’B'),
then we say that
LAOB = /(Ah, Bk)
is congruent to
Z/A'O'B = Z(A’h', B'k')
and write
Z(Ah, Bk) = A(A’h',B’k').
We assume here that all elements participating in the previous equalities belong to W,,. This
means that in Mathematics with Observers geometry, we do not define the congruence of angles

Z(h,k) and Z(h', k"). We can define it only in the case where for any points A, B, A’, B

satisfying the above conditions, we have
Z(Ah, Bk) = A(A’h', B’k:').
Then
Z(h, k) = L(h', k").
7.1 First property of congruence

In classical Euclidean geometry, we have the following statement:

If A, B are two points on a straight line a and if A’ is a point upon the same or another straight
line a’, then, upon a given side of A’ on the straight line a’, there always exists a unique one
point B’ such that the segment AB (or BA) is congruent to the segment A'B’.



Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in Ey W, straight line a with equation

z=0
and points

A(0,0),B(0,1) € a
Let straight line a’ have the equation

r—2y=0
and point
A'(0,0) € a'.

Any point B’ € a’ has the coordinates B'(z, ). We have

(AB,AB) =1
and

(A,B,,AIB,) =2 X9 (III X9 £)

We get

2 x5 (0.79 x2 0.79)= 0.98,
2 x5 (0.80 x5 0.80)= 1.28.
This means that point B’ € a’ such that

(AB,AB) = (A'B’,A'B/)
does not exist, that is, the answer to the question in this case is negative.

2) Let us take in E>W straight line a with equation

z=0
and points

A(0,0),B(0,1) € a
Let straight line a’ have the equation

and point

Let us take the point



B'(1,0) € d'.
We have

(AB,AB) = (A'B'A'B’) =1
and

AB=A'B,
that is, the answer to the question in this case is positive.

3) Let us take in EyW, straight line o with equation

=0
and points

A(0,0), B(0,1) € a.
Let straight line a’ have the equation

1.4 X9 —9 Y = 0
and the point

A'(0,0) € o'
Let us take two points

B'(0.60, 0.84), B"(0.61, 0.85) ca.
We have

(AB,AB)=1,
(A'B’, A'B')=0.60 x5 0.60 +2 0.84 x» 0.84 =1
and

(A'B",A’B”) = 0.61 x5 0.61 +20.85 x5 0.85 = 1.
This means that a point B’ € a’ such that

(AB, AB) = (A'B’, A'B')
exists but is not unique, and

AB= A'B,
AB= A'B",
that is, the answer to the question in this case is negative.

So we have proved the following:

Theorem 7.1.



In Mathematics with Observers geometry in the plane EsW.,,, there are two points A, B on a straight
line a and a point A’ upon the same or another straight line a’ such that upon a given side of A’ on
the straight line a’, there is no point B' such that the segment AB (or BA) is congruent to the
segment A'B'.

Theorem 7.2.

In Mathematics with Observers geometry in the plane EsW.,,, there are two points A, B on a straight
line a and a point A" upon the same or another straight line a' such that upon a given side of A’ on
the straight line a', there is only one point B’ such that the segment AB (or BA) is congruent to the
segment A'B'.

Theorem 7.3.

In Mathematics with Observers geometry in the plane EsW,,, there are two points A, B on a straight
line a and a point A" upon the same or another straight line a' such that upon a given side of A’ on
the straight line a’, there is more than one point B’ such that the segment AB (or BA) is congruent
to the segment A’ B'.

7.2 Second property of congruence
In classical Euclidean geometry, we have the following statement:

If a segment AB is congruent to the segment A’ B’ and also to the segment A” B”, then the

segment A’ B’ is congruent to the segment A” B”.
Question: Is this statement correct in Observer’s Mathematics geometry?

We must have

(AB,AB)= (A'B',A'B/),
(AB,AB)= (A"B",A"B").
So

(AIBI A/BI) — (AIIBII AIIB/I)
This means that the answer to the question is positive.

So we have proved the following:

Theorem 7.4,
In Mathematics with Observers geometry, if a segment AB is congruent to the segment A’ B' and also
to the segment A" B", then the segment A’ B' is congruent to the segment A" B".

7.3 Third property of congruence

In classical Euclidean geometry we have the following statement:



Let AB and BC be two segments of a straight line o that have no common points aside from
the point B, and, furthermore, let A’ B’ and B’C"’ be two segments of the same or another

straight line a’ having, likewise, no common point other than B’. If

AB=A'B
and

BC = B'C’,
then

AC = A'C'.

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in EoW), straight line o with equation

z=0
and points

A(0,0),B(0,1),C(0,2) € a.
Let straight line a’ have the equation

y=20
and points
A'(0,0), B'(1,0),C"(2,0) € d'.
We have
(AB,AB)= (A'B',A'B’) =1,
(BC,BC)= (B’C',B'C') =1.
So
AB= A'B/,
BC= B'C’,
and also
(AC,AC) = (A’C’,A’C') =4,
So

AC = A'C’

that is, the answer to the question in this case is positive.

2) Let us take in oW straight line o with equation

=0



and points

A(0,0), B(0,1),C(0,2) € a.
Let s straight line a’ have the equation

14 Xoz —2y=0

and points
A'(0,0), B'(0.60,0.84),C(1.20,1.68) € a'.
We have
(AB,AB)= 1,
(A'B', A'B")=0.60 x5 0.60 + 0.84 x5 0.84 = 1,
and
(BC,BC)=1,

(B'C/,B'C’)= (1.20 —3 0.60) x5 (1.20 —3 0.60) +» (1.68 —5 0.84) x5 (1.68 — 0.84) = 1.
We get

(AC,AC) =14,
but

(A'C',A'C’) =1.20 x5 1.20 4+, 1.68 x5 1.68 = 4.16.
This means that

(AC,AC) # (A'C',A'C')

and

AC £ A'C,

that is, the answer to the question in this case is negative.

3) Let us take in EyWs straight line o with equation

z=0
and points

A(0,0), B(0,1.46),C(0,2.92) € a.
Let straight line a’ have the equation

T —2Y= 0
and points

A'(0,0), B'(1.02,1.02), C'(2.04,2.04) € d'.



We have

(AB,AB)= 2.08,
(A'B',A'B")=1.02 x5 1.02 + 1.02 x5 1.02 = 2.08
and

(BC,BC)= 2.08,
(B'C/,B'C')= (2.04 —3 1.02) x5 (2.04 —5 1.02) +5 (2.04 —5 1.02) x5 (2.04 —5 1.02) = 2.0

So
AB= A'B,
BC= B'C".
We get
(AC,AC) = 8.49,
but

(A'C',A'C’) =2.04 x5 2.04 4, 2.04 x5 2.04 = 8.32.
This means that

AC # A'C/,

that is, the answer to this question in this case is negative.

So we have proved the following:

Theorem 7.5.

In Mathematics with Observers geometry in the plane EsW,, there are two segments AB and BC on
a straight line a that have no common points aside from the point B, and there are two segments A' B
and B'C" of the same or another straight line a' having no common point other than B’ with

AB = A'B’ and BC = B'C’ suchthat AC # A'C".

Theorem 7.6.

In Mathematics with Observers geometry in the plane EsW,, there are two segments AB and BC on
a straight line a that have no points in common aside from the point B, and there are two segments

A'B’ and B'C' of the same or another straight line a’ having no common point other than B’ with
AB = A'B' and BC = B'C’ such that AC = A'C".

7.4 Angle in Observer’s geometry. First statement
Let us first consider the following classical geometry statement:

The half-rays h and k, taken together with the point O, divide the remaining points of the

plane into two regions having the following property: If A is a point of one region and B a



point of the other, then every broken line joining A and B either passes through O or has a

common point with one of the half-rays h and k.
Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in the plane E;W,, two straight lines

a:z=0
and
b:y=0
and two half-rays h C a and k C b, taken together with the point O(0, 0),
h:y>0
and
k:x>0.

Then the interior region Rf(h’k) of Z(h, k) is

R/ — R¢N R,

)

and the exterior region REMM) of Z(h,k) is

Ry = Byw, \ (RYMP URUK).
So half-rays h and k, taken together with the point O, in this case divide the remaining points of

the plane g into two regions.

If a.b C « are two lines on a plane and h C a and k C b, then two regions may be R{ N R’{,
RSN RS, RY N RY, or RZ N RS and may not cover full plane a in the case where RS # A or
RS #A.

2) Let us take in the plane EyW,, two straight lines

a:r+,99...9.99...9=0
and

b:y—,99...999...9=0
and two half-rays h C a and k C b, taken together with the point
0(—99...9.99...9,99...9.99...9):

h:y<99...9.99...9,
k:xz>-99...9.99...9.
Then the interior region Rf(h’k) of Z(h, k) is



R;"Y = R¢ N R,

(3

and the exterior region R, (k) of Z(h, k) is

R;™ = B,W, \ (R UhUK) = A.
So half-rays h and k, taken together with the point O, in this case transform the remaining points

of the plane a into one region.
3) Let’s take two straight lines a, b C E2W,, with equations

a:y=20
and

b:3xpx—pny=0.
Let h be a half-ray of the straight line 0 emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0). Let the interior region Rf(h’k) of

/(h, k) be

R/"™ = R:NRY,

(3

k) of /(h, k) be

and let the exterior region Rf

R, = B, \ (R7™ URUE).

Let us take the points
A(1,1) € RA"M
and
B(-1,1) € RS

Then segment A B does not intersect half-rays h, k:

ABNh=A
because a N ¢ = A, where

c:y=1,

and

ABNk=A
because

3 %x,0.33...33=0.99...99,

3x,0.33...34=1.00...02.
So in this case the answer to the question is negative.



4) Let us take two straight lines a, b C FsW,, with equations

a:y=20
and
b:xz=0.
Let h be a half-ray of the straight line o emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0). Let the interior region Rf(h’k) be

y>0,
x>0,

be given by the equality

given by the system

: : Z(hok
and let the exterior region R, (h:F)

R — Byaw, \ (RF™M UnUE).
Let us take the points
A(1,1) € RAMP
and
B(-1,1) € RS

Then the segment AB intersects the half-ray k in point C(0, 1):

ABNK =C.
This means that in this case the answer to the question is positive.

So we have proved the following:

Theorem 7.7.

In Mathematics with Observers geometry in the plane EsW,, there are two half-rays h and k, taken
together with the point O, such that the remaining points of the plane are transformed into one region.
Theorem 7.8.

In Mathematics with Observers geometry in the plane EsW,,, there are two half-rays h and k, taken
together with the point O, such that the remaining points of the plane are divided into two regions.
Theorem 7.9.

In Mathematics with Observers geometry in the plane EsW,,, there are two half-rays h and k, taken
together with the point O, such that the remaining points of the plane are divided into three regions.
Theorem 7.10.

In Mathematics with Observers geometry in the plane Es W, there are two half-rays h and k, taken
together with the point O, that divide the remaining points of the plane a into two regions, and point A
of one region and point B of the other such that there is a broken line joining A and B that neither
passes through O nor has a common point with one of the half-rays h, k.

Theorem 7.11.



In Mathematics with Observers geometry in the plane EsW,,, there are two half-rays h and k, taken
together with the point O, that divide the remaining points of the plane a into two regions, and point A
of one region and point B of the other such that there is a broken line joining A and B that either passes
through O or has a common point with one of the half-rays h, k.

7.5 Angle in Observer’s geometry. Second statement
Let us consider another classical geometry statement:

If points A, A’ both lie within the same region, then it is always possible to join these two
points by a broken line that neither passes through O nor has a common point with either of
the half-rays h, k.

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let’s take two straight lines a, b C E,W, with equations

a:99.99 Xy —598.37T X y=20
and

b:98.37 xox —299.99 x5,y =0.
Let h be a half-ray of the straight line 0 emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0).

)

The interior region Rf(h’k is given by the system

{9999 X9 & —9 98.37 X4 Yy > 0,

98.37 X9 X —9 99.99 X9y < 0.
This means that

R"P— [(0.01,0.01), (0.02,0.02), ...

...(0.62,0.62), (0.63,0.63), (0.63,0.64), (0.64,0.63), (0.64,0.64), (0.64,0.65) . ...
...,(0.89,0.88), (0.89,0.89), (0.89,0.90), ...
...(0.99,0.98),(0.99,0.99), (0.99, 1.00), (1.00, 1.00)}.

Let us consider two points

A(0.01,0.01), A’(0.62,0.62).
Straight line a containing these points is

a:x—oy=0,
and the segment



V4
AA' ¢ RSP,
So in this case the answer to the question is positive.

2) Let us consider the same lines as in the previous case and other two points

A(0.89,0.88), A’(1.00,1.00).
Straight line b containing these points is

b:ay Xox+2ay Xay+2a3 =0,
and we have the system of equations

{al X9 0.89 49 ag X9 0.88 +oa3 = 0,
a1 X21+2a2 Xo21+2a3 =0,
that is,

{al X9 0.89 +9 a9 X90.88 =aq +39 as,
a1 +2az +2a3 =0.
So

a; € [+£0.01,40.02,...,40.09],
az = —azx,
az =0,

and the segment

AA' ¢ RITP),

So in this case the answer to the question is negative.
3) Let us take two straight lines a, b C E5W5 with equations

a:xz=0
and

b:y=0.
Let h be a half-ray of the straight line o emanating from the point O(0, 0), and let k be a half-ray
of the straight line b emanating from the same point O(0, 0). The exterior region Rf (h:F) is

given by

Z(hk)

RS = Byw, \ (RYMP URUK).

Let us consider two points

A(-2,3),A'(2,-3) € RSP,



It is possible to join these two points by a broken line AC' A’ that neither passes through O nor
h,k)

has a common point with interior region Rf( and either of the half-rays h, k, where

C(-2,-3),
and Rf 8) is the set of all points in EoWj satisfying the system of inequalities

x>0,
y > 0.
So in this case the answer to this question is positive.

4) Let us take two straight lines a, b C E3W5 with equations

a:y=20
and

b:0.01 xXox —9y—+-0.99 =0.
Let h be a half-ray of the straight line o emanating from the point O(—99.99, 0), and let k be a
half-ray of the straight line b emanating from the same point O(—99.99, 0). In this case, we

have
h=a
and
k=1b
The exterior region Rf (h.k) is given by
R;"Y = REUR},

where

= [(z,y) € EsW, 1y < 0],
R2—|: y)€E2W2 0.01 ng—2y+20.99<0],

)
and the interior region R; £(hk) ; is given by the system of inequalities

y>0
0.01 Xo & —o Y +2 0.99 > 0.
Let us consider two points

Az, 1), A (w2, 92) € RS,
where

{91 <0
0.01 X2 x2 —2y2 +20.99 < 0.



Then it is impossible to join these two points by a broken line that neither passes through O nor

has a common point with the interior region R; and either of the half-rays h, k.
If we consider the line

CZ3X2$—2y—21.00:0,
then

cNh=A,
cNk=A,
but

Z(hk
cNR; (h.k) # A.
This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.12.

In Mathematics with Observers geometry in the plane Eo2W,, there are two half-rays h and k, taken
together with the point O, that divide the remaining points of the plane a into two regions, and points A,
A’ of the same region such that there is a broken line joining A and A’ that neither passes through O
nor has a common point with either of the half-rays h, k.

Theorem 7.13.

In Mathematics with Observers geometry in the plane EoW,, there are two half-rays h and k, taken
together with the point O, that divide the remaining points of the plane a into two regions, and points A,
A’ of the same region such that there is a broken line joining A and A’ that either passes through O or
has a common point with one of the half-rays h, k.

7.6 Fourth property of congruence
Classical geometry states:

Let an angle Z(h, k) be given in a plane g, and let a straight line a’ be given in a plane «’'.
Suppose also that in o’ a definite side of the straight line a’ is assigned. Let h’ be a half-ray of
the straight line a’ emanating from a point O’ of this line. Then in the plane o/, there is a
unique half-ray &’ such that the angle Z(h, k), or Z(k, h), is congruent to the angle Z(h/, k')
and at the same time, all interior points of the angle Z(h’, k') lie upon the given side of a/,
that is,

Z(h,k) = 4(h’, k').
Every angle is congruent to itself, that is,

L(h,k) = Z(h, k)



/(h, k) = Z(k, h).

Question: Is this statement correct in Mathematics with Observers geometry?
1) Let two straight lines in FyWs,

a:99.99 xox —598.37T xoy=0
and

b:99.99 X9 —596.37 xoy =0,
have a common point O(0, 0) and two distinct half-rays

h C a,
h:[(z,y) €a:z > 0],
and

kCb,
k:|[(z,y)€b:z>0],
emanating from the point 0. So we get Z(h, k) and Z(k, h).

Direct calculations give us the following results:

h = C(0.62,0.63),
that is, h contains only one point, and

k= [E(0.28, 0.29), F(0.54,0.56), G(0.80, 0.83)},
that is, k contains only three points.

We have the vectors

OC= (0.62,0.63),
OE= (0.28,0.29),
( )
( )

OF= (0.54,0.56),
OG= (0.80,0.83),
and we get
(0C,0C)=10.72 > 0,
(OE,OE)=0.08 > 0,
(OF,OF)=0.50 > 0,
(0G,0G)=1.28 > 0.

So



(0OC,0C)+# (OE, OE),

(OC,0C)+# (OF, OF),

(0C,00)# (0G,0G),
which means that

Z(h, k) = Z(h, k)

and
A(Ch, Ek);‘é A(Ek, Ch),
A(Ch, Fk);é A(Fk, Ch),
A(C’h, Gk);é A(Gk, C’h),
that is,

Z(h, k) # Z(k, h).

So in this case the answer to the question is negative.

2) Let two straight lines in Fo W,

a:99.99 X9 —598.37T X y=20
and

b:y=0,
have a common point O(0, 0) and two distinct half-rays

h Ca,
h: [(a;,y)Ea:a:>0},
and

kCb,
k:|[(z,y)€b:z>0],
emanating from the point 0. So we get Z(h, k).

Now let us take a straight line in oW,

a' :99.99 x5 —596.37 x5y = 0,
and any other straight line in EoWo,

b':a1 X9 & —9 Q9 X2y:0,
having common point O(0, 0) with line a’. We get two distinct half-rays
h' ca,
h:[(z,y) €a:z > 0],



and

K cb,
K [(z,y) ed :z>0].
Direct calculations give us the following results:

h = C(0.62, 0.63),
that is, h contains only one point, and

h = [E(O.28, 0.29), F(0.54,0.56), G(0.80, 0.83)} ,
that is, b’ contains only three points.

We have the vectors

0C= (0.62,0.63),
OE= (0.28,0.29),
OF= (0.54,0.56),

= ( )

OG= (0.80,0.83),
and we get

(0OC,0C)=10.72 > 0,
(OE,OE)=0.08 > 0,
(OF, OF)= 0.50 > 0,
(0G,0G)=1.28 > 0.
So

(0OC,00C)+# (OE,OE),
(0OC,00C)+# (OF, OF),
(0C,00)+# (0G, 0G).

This means that for any line ' and any points D € kand K,L, M €V,

Z(Ch,Dk)# Z(EN ,KK'),
£(Ch,Dk)# £(FK LK),
/(Ch,Dk)# £(Gh', MK').

So in this case the answer to the question is negative.

3) Let two straight lines in E,W,,,

and



b:z =0,
have a common point O(0, 0) and two distinct half-rays

h C a,
h: [(w,y)ea:x>0},
and

kCb,
k:|(z,y)€b:y>0],
emanating from the point 0. So we get Z(h, k).

Let us consider straight lines in £y W,

a:y=1
and

b iz =1,
having a common point O’(1, 1) with line a’. Let h’, K’ are any two distinct half-rays

h' ca,

R [(z,y) €a t x> 1],
and

Ecbv,

K [(z,y) €b 1y >1],

emanating from the point O’. So we get Z(h', k').

Let us take points

A(1,0)€ h,
B(0,1)€ k,
A'(2,1)e K,
B'(1,2)e k'

and the corresponding vectors

OA= (1,0),

OB= (0,1),
O'A'= (1,0),
O'B’=(0,1).

We get



(OA,0A)=1>0,
(OB,0B)=1 >0,
(OA’ OA)—1>O,
(O B’,0 B')— 1>0,
and thus
OA=0'4A’,
OB=0O'B'.
We have the scalar products
(OA,0B)=1x,0+,0x,1=0,
(O'A",0'B)=1%,0+4,0x,1=0,
and their equality

(OA, OB) = (O'A', O'B') =0,
that is,

Z(Ah, Bk) = Z(A'h', B’k').
Moreover, if we take points

(:130, ) ) Z 01,
B(0,y0)€ k, yo = 0.1,
A ($0 +n ]. 1)6 h,
B (]. Yo +n )G k’
and the corresponding vectors
OA= (z,0),
OB= (07 yO)’
O'A’= (2,0),
O,BI: (07 yO)’

then we get

(OA, OA)= 2 x, 79 > 0,
)= Y0 Xn Yo >0,
(O'A/,0'A") =z x,, 7o > 0,
(O'B’,0'B')=yq x, yo > 0.

Note that for the remaining possible points of h, k, h', k',



A" (0,0
B"(0,y0
A" (20 40 1,1
B"(1,y0 + 1

eh, 0<z<0.1,
ck, 0<yo<0.1,
ch,
ck,

N N N

we get

(OA",0A")
(OB”,0B")
)
)

To Xn To :Oa

Yo Xn Yo = 0,

Zo Xpxg =0,

(OIAIII O/AIII

(OIB/”, OIB/II =1 X Yo = 0'
This means that
OA=0'4,
OB= 0O'B.

We have the scalar products

(OA, OB): g Xp 0 “+n 0 Xn Yo = 0,
(O,A,, O,BI): o Xp 0 +n 0 Xn Yo = 0,
and their equality
(OA,0B) = (O'A', O'B') =0,
that is,

Z(Ah, Bk) = Z(A'h', B’k'),
which means that

Z(h,k) = £(R',K).

This means that in this case the answer to the question is positive.

4) Let take three straight lines a, b, c C EoWs:

a:2Xox—2y=0,

b:x—y=0,

c:0.50 xox —y=0.
These lines have a unique common point O(0, 0),

anNnbnNec=0.
Denote by h the half-ray of the straight line a emanating from a point O,

h=[(z,y) € a,z > 0],
by k the half-ray of the straight line b emanating from same point O,



k= [(z,y) € b,z > 0],
and by / the half-ray of the straight line ¢ emanating from the same point O,

l=[(z,y) € c,z > 0].
Let us take the points

A(1,2) € h, C(l, 1) €k, B(2, 1) el.
Then we have

OA= (1,2),

and we get

(OA,0A)=1x51422x52=5,
(OB,0B)=2x52+51 x51=5,
(OA,0C)=1x51452x%x,1=3,
( )
( )
( )

OA,OA)= (OB, OB),

OB,OC =2X21l421Xx21=23,
— (OB, 0C),

OA,0C
that is,

OA= OB,

0OC= OC.
This means that the points A € h, C € k, B € [ satisfy the definition of congruence of angles
and

Z(Ah,Ck) = Z(BL,Ck).
Let us now take the other points

D(2.02,4.04) € h, F(2.29,2.29) €k, E(4.05,2.00) el
We have

OD= (2.02,4.04),

OF= (2.29,2.29),

OE= (4.05,2.00),
and we get



that is,

and

So

(OD,0D)= 2.02 x5 2.02 +5 4.04 x5 4.04 = 20.40,
(OE, OE)= 4.05 x2 4.05 +2 2.00 x2 2.00 = 20.40,
(OD, OF)=2.02 x5 2.29 +5 4.04 x5 2.29 = 13.86,
(OE, OF)= 4.05 x5 2.29 +5 2.00 x5 2.29 = 13.84,
(OD,0D)= (OE, OE),
(OD, OF)+# (OE, OF),

OD= OE,

OF= OF,

(OD, OF) # (OE, OF).

/(Dh, Fk) # /(El, Fk).

This means that in this case the answer to the question is negative.

5) Let us take two straight lines in FoWs,

and

a:1.40><2a:—2y:0

b:x—5y=0,

which have a unique common point O(0, 0),

anb=0.

Denote by h a half-ray of the straight line d emanating from a point O,

h = [(m,y) €a,x > 0},

and by k a half-ray of the straight line b emanating from the same point O,

Let us take two points A(0.61,0.85), A’(0.63,0.87) € h and two points B(1,1), B'(1,1)

k= [(z,y) € b,z > 0].

that is, B = B’. We have

and we get

OA 0.61,0.85),
0.63,0.87),
1),

(
= (
=(
=(L,1),

€k,



(OA,0A)=0.61 x5 0.61 45 0.85 x5 0.85 =1 > 0,
(OA’,0A")=0.63 x30.63 +,0.87 x5 0.87 =1 > 0,
(OB,0OB)=1x31+451x,1=2>0,
(OB, 0B’ )=1x51+451x51=2>0.

So we have
OA= 04/,
OB= OB'.
For the pairs of vectors
OA,0B
and
OA',0OB/,

we have the scalar products

(OA,0B)=0.61 x21+20.85 x5 1 = 1.46,
(OA',OB')=0.63 x31+20.87 x3 1 =1.50,
and their inequality

(OA, OB) # (OA’, OB').
So

Z(Ah, Bk) £ A(A'h, B’k:).
This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.14.
In Mathematics with Observers geometry in the plane EoW.,,, there are an angle Z(h, k) and a
straight line a’ with a half-ray h' emanating from a point O’ of this line such that there is no half-ray
k' such that

Z(h,k) = Z(h’, k').
Theorem 7.15.
In Mathematics with Observers geometry in the plane E2W.,, there are an angle Z(h, k) and a
straight line a’ with a half-ray h' emanating from a point O’ of this line such that there is a half-ray k'
such that

Z(h, k) = l(h', k').
Theorem 7.16.
In Mathematics with Observers geometry in the plane EsW,,, there is an angle Z(h, k) such that

Z(h, k) = Z(k, h).

Theorem 7.17.



In Mathematics with Observers geometry in the plane EsW,,, there is an angle Z(h, k) such that
L(h, k) #£ Z(k,h).

7.7 Fifth property of congruence
Classical geometry states:

If an angle Z(h, k) is congruent to an angle Z(h/, k') and to an angle Z(h”, k"), then the
angle Z(h', k') is congruent to the angle Z(h”, k"), that is, if
Z(h,k) = Z(W, k)
and
Z(h,k) = Z(R", k"),
then
L(WK) = Z(R"K).

Question: Is this statement correct in Mathematics with Observers geometry?
Let us consider E2W,. Let a, b € E;2W, be the straight lines

a:a1XnT+na2 Xpy+naz =0
and

b:b1 Xpx+nb2 Xny+nb3 =0
having a common point O(zo, yo).

Let h, k are two distinct half-rays

hCa
and

kECb
emanating from the point 0. So we get Z(h, k).

Also, let a’, b’ € E2W, be the straight lines

! !/ ! !
a :a; XnZ+nay XnyY+naz =0
and

b’:b'l ><n:1:+nb'2 xny+nbg =0
having a common point O'(z, yg)-

Let b/, k' be any two distinct half-rays



!/

K Ca
and

K cb
emanating from the point O’. So we get Z(h', k).

Because

for some points

(ml —nZ0,Y1 —n yO)a

( 2 " nZ0yY2 —n yO)a

O'A'= (mll —n 51367]/1 ~n yf)),
/

(2 )

such that
(OA,0A)>0
(OB,0B)> 0,
(O’A’, O’A')> 0
(0O'B',0'B’)> 0,
OA=0'4A/,
OB=O0'B,

(OA7 OB): ($1 -n CC()) Xn ("1"2 —n "17()) +n (yl -n yO) Xn (y2 —n yO)’
(O'A’,O'B')= (2} —n z)) Xn (€ —n xh) +n (Y1 —n¥p) Xn (Y5 —n Yp),
(OA,0B)= (O’'A’,0'B’).
Again, let us consider Z(h, k). We have two straight lines a,b € E,W,,,

a:a1 XpT+p00 XpyY+,a3=0
and

bibl an—l—nbg Xny—l—nbg :0,
having a common point O(z, yo) and two distinct half-rays



hCa
and

ECb
emanating from the point 0. So we get Z(h, k).

Let us consider Z(h”, k"). We have two straight lines a”,b" € EsW,,

n n n n
a' 1a] XnTH+nay Xny+nag =0

and

b" i b Xz 45 by Xpy+n by =
having a common point O"(z{, y;) and two distinct half-rays

h” C all
and

k” C bl/
emanating from the point O”. So we get Z(h", k").

Because

Z(Ch, Dk) = A(C'h”, D'k:")
for some points

0(9«“3,?}3)
D($4,y4)
l( ) hll
'(m2,y2) k”

we have the corresponding vectors

OC= (23 —n 0, Y3 —n Y0)»
OD= (504 —nZ0o,Y4 —n yO)’
0"C'= (&~ 2, uf —u u8).
O"D'= (z3 —n 20, Y2 —n Yo)

such that



(0C,0C)>0
(OD,0D)> 0,
(O"C’, O”C')> 0
(0"D’,0"D’)> 0,
oCc=0"c’,
OD= 0"D/,
(OC,0D)= (23 —n o) Xn (T4 —n T0) +n (Y3 —n Y0) Xn (Y4 —n Yo),
(0"C',0"D')= (af =) s (@ =)+ (U} =0 98) o (85 =0 95).
(0C,0D)= (0"C’,0"D’).
The question stated above means: is the statement
A(A’h’,B’k’) = A(C’h”,D'k”)

correct?

The answer does not follow automatically because two sets of points

Ach, Bek, A ech’, Bck
and

Cch, Dck, C'ch", D ck'
are different.

1) Let two straight lines a,b € EsW,,,

a:y=20
and

b:xz=0,
have a common point O(0, 0) and two distinct half-rays

h C a,
h:[(z,y) € BEsW, 1z > 0],
and

kCb,
k:[(z,y) € EaWy:y > 0],
emanating from the point 0. So we get Z(h, k).

We also have two straight lines a’, b’ € E;W,,

a:y=0



and

b iz =0,
having a common point O(0, 0), that is,
a=a
and
b=1"b.
Let A/, k' be any two distinct half-rays
' ca,
h': [(a;,y) c EoW,
that is,
h = h,
and

K cb,

K [(z,y) € W,y

emanating from the point 0. So we get Z(h', k').

Also, we have two straight lines a”,b" € E,W,,,

a":y=0
and
b iz =0,
having a common point O(0, 0), that is,
a=ad"
and
b="b"

and two distinct half-rays

hll C a’II,

h' (=, y) € B2Wy
and

kli C b”,

K" - [(w,y) S Eng :

:a;>0},

y < 0],

:a;<0},

y>0],



that is,

K =k,
emanating from the point 0. So we get Z(h", k").

Let us take the points
and the corresponding vectors

We get

)=1>0,
(OA',0A)=1>0,
(OB’,0B')=1> 0,

and

OA= OA/,
OB= OB'.
We have the scalar products
(OA,0B)=1x%x,0+,0x,1=0,
(OA',0OB')=1x,0+,0 x, (-1) =0,
and their equality
(OA,0B) = (OA',0B’) =0,
that is,
Z(Ah, Bk) = A(A'h',B’k').
Let us take the points



and the corresponding vectors

We get

(OA,0A)=1>0,

(OB,0B)=1 >0,
( OA’ OA"): 1>0,
( OB",0 B”)— 1>0,
and

OA= OA",
OB= OB".
We have the scalar products
(OA,0B)=1x,0+,0x,1=0,
(OA",0B")= (—1) x,, 0+, 0 x, (1) =0,
and their equality

(OA,0B) = (OA",0B") =0,

that is,
Z(Ah,Bk) = A(A"h", B”k”).
Let us take the points
A'(1,0)e A/,
B'(0,-1)e ¥/,
AII( 1, ) h/l
B"(0,1)e k",

and the corresponding vectors



We get

(OA’,04A')
(OB’,0B’)
)
)

(OAII OAII
( BII OB/I

1>
1>
1>
1>

and

OA'= 0A",
OB'= OB’
We have the scalar products
(OA',OB')=1x,0+,0 %, (—1) =0,
(OA",0B")= (1) X, 0+, 0 x, (1) =0,
and their equality

(OA',OB') = (OA",OB") =0,
that is,

A(A,h,, B/kl) = 4 (A//h//, B”k”) .
This means that in this case the answer to the question is positive.

2) Let us consider EyWs, and let two straight lines a,b € E;Wo,

a:x—ay=>0
and

b:1.01 xgac—2y20,
have a common point O(0, 0).

Let h, k be any two distinct half-rays,

h C a,
h:[(z,y) €a:z >0,
and



kCb,
k:|(z,y) €b:az>0],
emanate from the point 0. So we get Z(h, k).

Also, let a’, b’ € E2W5 be another second pair of straight lines

a :99.99 Xy x —298.37 Xxoy =0
and

b :98.37 Xox —399.99 x,, y =0
having a common point O(0, 0).

Let A/, k' are any two distinct half-rays

h' ca,

B :[(z,y) €a’ iz > 0],
and

K cb,

K :[(z,y) €b 1z >0],
emanating from the point 0. So we get Z(h', k').

Leta”,b"” € E2W, be the third pair of straight lines

a”:99.99 xs 2 —296.37 x2y =0
and

b" :96.37 xox —299.99 X2y = 0
having the common point O(0, 0), and let two distinct half-rays

hll C al/,

R : [(z,y) € a” 1z > 0],
and

k/l C b//,

K" [(z,y) €b" 12 > 0],

emanate from the point 0. So, we get Z(h", k").

Let us take the points



A
B
Al
Bl

0.62,0.62)€
0.62,0.62)€

0.62,0.63)€ h’
0.63,0.62)€ K/,

A~~~ N N

and the corresponding vectors

OA= (0.62,0.62),
OB= (0.62,0.62),
= (0.62,0.63)
= (0.63,0.62).

I

We get

(OA,0A)=10.72 > 0,

(OB, 0B)=0.72 > 0,
(OA' OA ) 0.72 > 0,
(OB' OB') 0.72 > 0,
and

OA= 04/,
OB= OB'.
We have the scalar products

(OA,OB)= 0.62 x,, 0.62 4, 0.62 x,, 0.62 = 0.72,
(OA',0OB’)=0.62 x,, 0.63 +, 0.63 x,, 0.62 = 0.72,
and their equality

(OA,0B) = (OA',0B') =0.72,

that is,
Z(Ah, Bk) = A(A'h', B’k')
Let us take the points
A(0.55,0.55)€
B(0.55,0.55)¢
A"(0.54,0.56)¢ h"
B"(0.56,0.54)c k",

and the corresponding vectors



OA=
OB=
OAII
OBII

0.55,0.55
0.55,0.55
0.54,0.56
0.56,0.54).

I

)

)

~~ Y~
— — T

We get

(OA,0A)= 0.50 > 0,
(OB, OB)= 0.50 > 0,

)=

)=
( OA’ OA") 0.50 > 0,
( OB",0 B") 0.50 > 0,
and

OA= OA",
OB= OB".
We have the scalar products
(OA,0B)=0.55 x,, 0.55 4+, 0.55 x,, 0.55 = 0.50,

(OA",0B")=0.54 x,,0.0.56 +, 0.56 x,, 0.54 = 0.50,
and their equality

(OA,0B) = (OA",0B") = 0.50,
that is,

/(Ah, Bk) = Z(A"W", B"K").

Let us now consider Z(h', k") and Z(h",k"). Direct calculations give us the following results:

B = C'(0.62, 0.63),
that is, A’ contains only one point;

k' = D'(0.63,0.62),
that is, k' contains only one point;

R = [E"(0.28,0.29), F"(0.54,0.56), G"(0.80,0.83)]
that is, h” contains only three points;

k" = [H"(0.29,0.28),1"(0.56,0.54), J"(0.83,0.80)],
that is, £” contains only three points.

We have the vectors



= (0.62,0.63)

= (0.63,0.62)

OE” (0.28,0.29)
OF”= (0.54,0.56),
OG”"= (0.80,0.83),
( )

( )

( )

Y
Y

Y

OH"= (0.29,0.28
OI"= (0.56,0.54
OJII

)

)

0.83,0.80

)

and we get

0oC',0C")=

(OD’,0D’)=
(OE",OE")=0.08 > 0,
(O F” ,OF")=0.50 > 0,
(0G",0G")=1.28 > 0,
(OH",0H")= 0.08 > 0,
(OI”,01")= 0.50 > 0,
)=

(0J”,03")=1.28 > 0.
So

(0C’,0C")+# (OE", OE"),

(0C’,0C')+# (OF”, OF"),

(0C’,0C')# (0G",0G"),
and

(OD’,0D’)# (OH",0H"),

(OD’,0D’)# (01”,01")

(OD',0D')+# (0J",03").
This means that



Z(C'w',D'K)# L(E"n", H"E"),
£(C'W,D'k)# L(E"R", I"E"),
Z(C'W,D'K)#£ L(E"W", J"K"),
Z(C'W,D'K)#£ L(F"", H"E"),
£L(C'W, D'k #£ L(F"n", I"E"),
Z(C'H, D'k L(F"n", J"K"),
Z(C'W,D'K)# £(G"n", H"E"),
Z(C'H, D'k 2 L(G"n", I"K"),

A(Clh/,D k,)7_é L(G//hll’ llkll)7

so that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.18.

In Mathematics with Observers geometry in the plane EoW,,, there are three distinct angles Z(h, k),
LW, K, Z(W" k") with Z(h,k) = Z(h', k') and Z(h, k) = Z(h", k") such that

LW, K = 2Z(h"E").

Theorem 7.19.

In Mathematics with Observers geometry in the plane E2W.,, there are three distinct angles /(h, k),
Z(K K, Z(h", K") with Z(h,k) = Z(h', k') and Z(h,k) = Z(h", k") such that

L(W K £ Z(R"E").

7.8 Sixth property of congruence

Let (h, k) be two half-rays emanating from a vertex A of a triangle ABC' and passing,
respectively, through B and C. The angle Z(h, k) is then said to be the angle included by the
sides AB and AC or the one opposite to the side BC in the triangle ABC'. It contains all the
interior points of the triangle ABC and is denoted by the symbol / BAC or ZA.

Classical geometry states:
If in the two triangles ABC and A’ B’'C’, we have the congruences
AB=A'B', AC=AC', /A=/A,
then we also have the congruences
/B=/B, /C=/C"

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider EsW5, and let a,b € EsW5 be two straight lines



a:99.99 xox —598.37T x,y=0
and

b:98.37 X2 —299.99 X, y=0
have a common point O(0, 0).

Let h, k are be two distinct half-rays

h C a,
h:[(z,y) €a:z >0,
and

k C b,
k:|[(z,y)eb:z>0],
emanating from the point 0. So we get Z(h, k).

Let us take the points

A(0.62,0.63)< h,
B(0.63,0.62)c k,
and the corresponding vectors

OA= (0.62,0.63),
OB= (0.63,0.62).
We get

(OA,0A)=10.72 > 0,
(OB,0B)=0.72 > 0.
Let us build straight line ¢ containing points A, B:

C:C1 X9 +9Co X2y+203:0
that is, we have

C1 X9 0.62 “+9 Co X9 0.63 +2cCc3 = 0,
c1 X2 0.63 +2¢2 X20.62 +3c3 = 0.
So

C1 X9 0.62 +92 €y Xog 0.63 = C1 X9 0.63 +2 C2 X9 062,
c1 X20.63 42 c2 x20.62 45 c3 =0,
and

C1 X9 0.62 —9C1 X2 0.63 = Co9 X9 0.62 —9 Cy X9 063,
c1 X20.63 +2¢2 X20.62 +3c3 = 0.



Let us consider two different solutions of this system:

C1 = 1)

C2 1)

cs = —1.25,
and

C1 = 1.02,

cy = 1.02,

c3 = —1.25,

that is, the first line ¢ has the equation

Wiz 4y y—21.25 =0,
and the second line ¢(®) has the equation

c® :1.02 X9z +91.02 X9y —51.25 = 0.
So we get two half-rays

14D L)

S [(a;,y) cecW:z> 0.62],
and

gca,
g: [(z,y) €Ea:z<0.62],
emanating from the point A. So we get /(111 g).

Also, we get two half-rays

102) — L)

142) . [(z,y) € Mg < 0.63],
and

fch,

f:[(zy)eb:z<0.63],
emanating from the point B. So we get Z(1(*?), f).

So we get the triangle O A B with vertices O, A, B and two half-rays (h, k) emanating from the

vertex O, passing, respectively, through A and B, and forming

Z(h, k) = £0.

The half-rays (! (1) , g) emanate from the vertex A, pass, respectively, through B and O, and form



£(1M), g) = £A.
The half-rays (! (12), f) emanate from the vertex B, pass, respectively, through A and O, and form

£(199) f) = «B.
Let us now go to line ¢®? In this case, we consider the same points O, A, B but mark them as o,
A’, B'. We do that because in Mathematics with Observers geometry, two different points of any
plane do not define uniquely a straight line containing these points. Also, a triangle has to be
considered as the figure formed by the set of three segments of straight lines. In our case, the
triangle O AB is the figure formed by the set of three segments of lines a, b, ¢, and the triangle
O'A'B' is the figure formed by the set of three segments of lines a, b, ¢(?).

So we get two half-rays

12D - @

12, [(z,y) € iz > 0.62],
and

gCa,
g: [(z,y) €Ea:z<0.62],
emanating from the point A’. So we get Z(1?Y), g).

Also, we get two half-rays

122) @)
122) . [(z,y) € ® < 0.63],
and
fco,

f:|(z,y) €b:z <0.63],
emanating from the point B'. So we get Z(1??), f).

So we get the triangle O’ A’ B’ with vertices O’, A’, B’ and two half-rays (h, k) emanating from

vertex O', passing, respectively, through A’ and B’, and forming

Z(h,k) = Z0'.
Also, we get two half-rays (I (1) , g) emanating from the vertex A’, passing, respectively, through

B’ and O’, and forming

L1 g) = 24,



and two half-rays (l(22), f) emanating from the vertex B’', passing, respectively, through A’ and

O', and forming

£, f) = 4B
So in two triangles OAB and O’ A’ B', we have the congruences
OA=0'A", OB=0'B', ZAOB=/A'O'B.
Let us take three points
F(—0.62, —0.63)€ g,
K(3.16,—1.91)e 1Y),
K'(3.14,-1.93)e 1®Y,

and the corresponding vectors

AF
A'F
AK=

A'K'=

—1.24,-1.26),
—1.24,-1.26),
2.54, —2.54),
2.52, —2.56).

~ o~ o~ o~

We get

(AF,AF)=3.08 > 0,
(A'F,A'F)=3.08 > 0,
(AK, AK)=12.82 > 0,

(A'K',A'’K')=12.82 > 0,

and
(AK, AF): 0.04,
(A'K', A'F) = 0.08.
This means that

/KAF # /K'A'F,
that is, in this case, we get the negative answer to the question.

2) Let us consider the same lines and half-rays as in case 1). Now we take three points

0(0,0)€ g,
K(3.16,—1.91)e 1Y),
K'(3.14,—1.93)e 1Y,
and the corresponding vectors



A0=
Alol:
AK=
A'K'=

—0.62,—0.63),
—0.62,—0.63),
2.54, —2.54),
2.52, —2.56),

~~ A~~~

and we get

(AO,A0)=0.72 > 0,
(A'0’,A'0")=0.72 > 0,

(AK,AK)=12.82 > 0,
(A’K',A’K')=12.82 > 0,

and

(AK, AO): 0.02,
(A'K',A'0")=0.0.
This means that

/OAK = /O'A'K’,
and so the answer to the question in this case is positive.

3) Instead of line ¢(?), let us now consider line ¢(®). It contains points A, B satisfying

0(3) 1C1 X2 +2cC2 Xoy+2c3 =0,

that is, as in case 1) of this section,

C1 X9 0.62 “+9 Co X9 0.63 +2cCc3 = 0,
c1 X20.63 +2¢2 X20.62 +3c3 = 0.
So

C1 X9 0.62 +9 Co Xog 0.63 = C1 X9 0.63 +2 C2 X9 062,
c1 X20.63 +2c2 x20.62 45 c3 =0,
and

C1 X2 0.62 —9 C1 X2 0.63 = C2 X9 0.62 —9 C9 X2 0.63,
c1 X90.63 +39c9 X90.62+9c3=0.
Now we consider the third solution of this system:

C1 = 1.02,
¢y = 1.03,
C3 = —1.25,

that is, line ¢®) has the equation



c® :1.02 xy2 +51.03 x5y —5 1.25 = 0.
So, as in case 1) of this section, we have the triangle O AB with vertices O, A, B and two half-rays

(h, k) emanating from vertex O, passing, respectively, through A and B, and forming

Z(h,k) = £0.
Also, (Z(H), g) are two half-rays emanating from vertex A, passing, respectively, through B and O,

and forming

Z(10 g) = 24,
and (I (12), f) are two half-rays emanating from vertex B, passing, respectively, through A and O,

and forming

£(1"2), f) = 4B.
Let us now go to line ¢® . In this case, we consider the same points O, A, B but mark them as O”,
A", B". Now we get two half-rays

16D o)

1630, [(z,y) € c® g > 0.62],
and

gCa,
g: [(z,y) €a:z<0.62],
emanating from the point A”. So we get Z(1G3V), g).

Also, we get two half-rays

132 — ()

S [(z,y) € ® < 0.63],

and

fcb,
f:](z,y) €b:z <0.63],
emanating from the point B”. So we get Z(1®?), f).

So we get the triangle O” A” B” with vertices O”, A”, B” and two half-rays (h, k) emanating

from vertex O”, passing, respectively, through A” and B”, and forming

/(hyk) = 20",
Also, (1Y), g) are two half-rays emanating from vertex A”, passing, respectively, through B”

and O”, and forming



(1B, g) = 24",
and (I(3?), f) are two half-rays emanating from vertex B”, passing, respectively, through A"

and O”, and forming

£(13D)f) = 2B".
So in the triangles OAB and O"” A” B”, we have the congruences

OA=0"4A", OB=0"B", ZA0OB=/A"0"B".
Let us take three points

F(—0.62,—0.63)€ g,
L(7.58,—6.33)e 1),

L"(7.60,—6.31)e 1BV,
and the corresponding vectors

AF= (—1.24,-1.26),
A"F= (—1.24,-1.26),
AL= (6.96,—6.96),
A"L"= (6.98,—6.94).
We get
(AF,AF)=3.08 > 0,
(A"F,A"F)=3.08 > 0,
(AL, AL)= 96.66 > 0,
(A"L", A"L")= 96.66 > 0,
and
(AL,AF)=0.12,

(A"L”, A”F) = 0.08.
This means that these three points do not satisfy the conditions for
Z/OAB = /0"A"B".

Now we can take the last possible points O, 0" € a, and instead of point F, we take again points
L, L":

0(0,0)e g

0"(0,0)€ g,
L(7.58,—6.33)c 111D,
L"(7.60,—6.31)c 1BV,

and the corresponding vectors



A0=
AIIoII:
AL=
AIILH:

—0.62,—0.63),
—0.62, —0.63).
6.96, —6.96),
6.98, —6.94).

~~ N/~

We get
(AO,A0)=0.72 > 0,
(A”0",A’0")=0.72 > 0,
(AL, AL)= 96.66 > 0,
(A"L", A"L")= 96.66 > 0,

and

(AL, A0)= 0.06,
(A"L", A"0")= 0.06.
This means that there are three points with corresponding congruence

ZOAL = LO"A"L".
So the answer to the question in this case is positive.

4) Again let us consider W5 and two straight lines in oW,
and

having a common point O(0, 0).
Let h, k be two distinct half-rays

h C a,
h:[(z,y) €a:y>0],
and

kCb,
k: [(a:,y)eb:w>0},
emanating from the point 0. So we get Z(h, k).

Let us take the points



and the corresponding vectors

OA= (0, 1),
OB= (1,0).
We get

(OA,0A)=1>0,
(OB,0B)=1 >0,
(OA,0B)=0.

Let us build straight line ¢ containing points A, B that satisfy

C:Cl Xa@®+2C3 X2y+2c3=0,
that is,

{01 X90+2c2 X21+2¢3 =0,
c1 X91l49¢c9g X90+5c3=0.
So

C2 = €1,
c1 +2 C3 — 0.

Let us consider a solution of this system,

C1 = 1,
Cy = 1,
C3 — —1,

that is, straight line c¢ satisfying the equation

c:x+2y—21=0.
So we get two half-rays

' ce,
I':[(z,y) €c:z>0],
and

9 Ca,

g:[(z,y) €a:y<1],
emanating from the point A. So we get Z(I1, g).

Also, we get two half-rays

2 ce,
P?:[(z,y) €c:y>0],



and

fcb,

fil(@y) eba<1],
emanating from the point B. So we get Z (12, f).

So we get the triangle O A B with vertices O, A, B and two half-rays (h, k) emanating from vertex

O, passing, respectively, through A and B, and forming

Z(h,k) = LAOB.
Also, (ll, g) are two half-rays emanating from vertex A, passing, respectively, through B and O,

and forming

£(I',9) = LOAB,
and (l2, f) are two half-rays emanating from vertex B, passing, respectively, through A and O,

and forming

(%, f) = ZOBA.
We get the vectors

AB= (—1,1),
BA= (1,-1),
and

(AO,AB)= —1,
(BO,BA)= —1.
Let us now we consider two other straight lines a’, b’ € E;W,,

a :x=1
and

b iy=1,
having a common point O’(1,1). Let A/, k' be two distinct half-rays,

h' ca,

R [(z,y) €a 1y > 1],
and

K cb,
K [(z,y) €b x> 1],
emanating from the point O’. So we get Z(h', k). Let us take the points



A'(1,2)e b/,

B'(2,1)e K/,
and the corresponding vectors

O'A’=(0,1),

O'B'= (1,0).

We get
(O'A',0'A")=1>0,
(0O'B',0'B’)=1 >0,
(O'A', 0'B’)=0.

Let us build straight line ¢’ containing points A’, B’ satisfying

c:Cy XoT+gcChy Xay—+acy =0,
that is,

Cll ><20—|—26’2 ><22—|—2cg:0,
Cll ><22—|—26’2 ><20—|—2cg:0.
So

N |
{02 =€y,
2 Xy +2¢5=0.
Let us consider a solution of this system,

r_
c; =1,

/

cy =1,
cy = —2,

that is, straight line ¢’ has the equation

c:xt+yy—2=0.
So we get two half-rays

I'cd,

It [(a:,y) cc:z> 1],
and

g Cd,
g :[(zy) €ad 1 y<2],
emanating from the point A’. So we get Z(I'!, ¢).

Also, we get two half-rays



/

I'2cd,
U%: [(z,y) € 1y >1],
and

frch,
o (zy) eb iz <2,
emanating from the point B’. So we get Z(I'2, f').

So we get the triangle O’ A’ B’ with vertices O’, A’, B’ and two half-rays (h’, k') emanating
from vertex O’, passing, respectively, through A" and B’, and forming

/(W k) =/A'0'B.
Also, (I't, g') are two half-rays emanating from vertex A’, passing, respectively, through B’ and

O', and forming

Z(l’l, g/) — ZO’A’B,,
and (I'2, f') are two half-rays emanating from vertex B’', passing, respectively, through A’ and
O’, and forming

/(% ') =20'B'A'.
We get the vectors
A'B'=(-1,1),
B'A'= (1,-1),
and
(A’O', A'B'): -1,
(B'O', B’A'): —1.
So in the triangles OAB and O’ A’ B', we have the congruences
OA=0'A', OB=0'B', ZAOB=/A'O'B,
and as we proved above,
/OAB=/L0'A'B', OBA=/0'B'A
So the answer to the question in this case is positive.

So we have proved the following:

Theorem 7.20.
In Mathematics with Observers geometry in the plane E5W,, there are two distinct triangles ABC

and A' B'C' with



AB=A'B, AC=AC', /A=/A
such that
/B=/B, /C=/C".
Theorem 7.21.
In Mathematics with Observers geometry in the plane EoW,,, there are two distinct triangles ABC
and A’ B'C" with
AB=A'B, AC=AC', /A=/A
such that
/B# /B, /C#/C".

7.9 Right angles theorem
Classical geometry states:
“All right angles are congruent to one another.”
Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider three straight lines a, b, c € EsW,,

a: 99.99 X9 X —2 98.37 X2y = 0,
b:99.99 X9 x +998.37 Xy =0,
c:z+2y=0,

having a common point O(0, 0), and four distinct half-rays h, k, /, m:

h Ca,
h:[(z,y) €a:z>0],
k C a,
k:|(z,y) €a:az <0,
[ Cb,
l: [(z,y) €b:z > 0],
m C c,
m: [(z,y) €Ec:z > 0],
emanating from the point 0. So we get Z(I, h), Z(l, k), Z(m, h), Z(m, k).

For lines a, b, all possible positive x form the set

$ = [0.01,0.02,...,0.99,1.00],
and we get

99.99 x, & = [0.99,1.98, .. .,98.82,99.99],



and all possible positive y form the set

¥ = [0.01,0.02,...,0.99,1.00,1.01],
and we get

98.37 X9 W = [0.98, 1.96,...,97.29,98.37, 99.35].
Direct calculations show that

99.99 x5 N 98.37 xo ¥ = 61.92,
and we get only one point in the intersection of these two sets, that is,

z=0.62; y=0.63.
That means that

h= A(0.62,0.63),

k= B(—0.62,—0.63),

I= C(0.62,—-0.63).
We have the vectors

OA= (0.62,0.63),
OB= (—0.62, —0.63),
0C= (0.62, —0.63),

and we get
(OA,0A)=10.72 > 0,
(OB, 0B)=10.72 > 0,
(0C,0C)=10.72 > 0,
and
(0OC,0A)=0,
(0OC,0B)=0.

This means that Z(Cl, Ah), Z(Cl, Bk) are right angles and

/(Cl, Ah) = /(Cl, Bk).

So in this case the answer to the question is positive.

2) Let us now consider straight lines ¢, and take point D(0.62,0.62) € c. We have the vector

OD = (0.62,0.62),
and we get

(OD,0D) = 0.72 > 0



and

(OD,0A)=0,
(OD,0OB)= 0.
This means that Z(Dm, Ah), Z(Dm, Bk) are right angles and

Z(Dm, Ah) = Z(Dm, BE).
Note that

L g m,

because

C & m.
This means that we have two distinct straight lines b, ¢ perpendicular to line o in one point O. So

in this case the answer to the question is positive.

3) Let us continue to consider straight lines ¢, and take another point £(1.00, —1.00) € c. We
have the vector

OE = (1.00, —1.00).
We get

(OE, OE) =2.00>0
and

(OE,O0A)= —0.01,
(OE, OB)= 0.01.
So Z(Em, Ah), Z(Em, Bk) are not right angles, and

Z(Em, Ah) # Z(Em, Bk).
This means that in this case the answer to the question is negative, and the rightness of an angle

depends not only on lines forming this angle but also on the points in these lines.

So we have proved the following:

Theorem 7.22.

In Mathematics with Observers geometry in the plane E2Wy, there are two distinct right angles that
are congruent to each other.

Theorem 7.23.

In Mathematics with Observers geometry in the plane E.o W, there are two distinct right angles that
are not congruent to each other.



7.10 Alternate angles theorem
Classical geometry states:

“If two parallel lines are cut by a third straight line, then the alternate interior angles and also
the exterior-interior angles are congruent. Conversely, if the alternate—interior or the

exterior-interior angles are congruent, then the given lines are parallel.”
Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider three straight lines a, b, c € EsW,,

a:1.26 X9 X —2 1.01 X2 Y = 0,
b:x—5y=0,
c:x—2y+-20.27 =0,
which have a common point O(0, 0); lines b, c are parallel in the Euclidean sense.

Let us take three points A, B,C € EyWs,

A(1.12,1.39)€ a N,

B(0.58,0.58)¢< b,

C(0.61,0.88)€< c,
and four distinct half-rays h, k, I, m:

h C a,
h:[(z,y) €a:z>0],
k C a,
k:|(z,y) €a:z<1.12],
[l Chb,
L: [(z,y) €b:z > 0],
m C c,
m: [(z,y) € c:z < 1.12].
Half-rays h, / emanate from the point O, and half-rays k, m emanate from the point A. So we get

the alternate interior angles /(h,1), Z(k,m).

We have the vectors



OA= (1.12,1.39),
AO= (—1.12,-1.39),
OB= (0.58,0.58),
AC= (-0.51,—0.51).
We get

=3.12 > 0,
=3.12 > 0,
= 0.50 > 0,
= 0.50 > 0,

(OA,0A
(AO,AO
(OB, 0B
(AC,AC

— —r —

and

(OA, OB): 1.36,
(AO,AC): 1.22.
This means that

OA= AQ,
OB= AC,
but

/AOB # Z/CAO.
So in this case the answer to the question is negative.

2) Let us now we have three straight lines a, b, c € EoWs:

a:x =0,
b:y=0,
c:y—1=0.

Lines a, b have a common point O(O, O), and lines b, c are parallel in the Euclidean sense.

Let us take three points A, B,C € E2Wj:

A(0.00,1.00)€ aNe,
B(1.00,0.00)¢< b,
C(-1.00,1.00)€ c,
and four distinct half-rays h, k, /, m:



h Ca,
h:[(z,y) €Ea:y>0],

k C a,

k:[(z,y) €a:y<1.00],
lCb,

l: [(m,y)Eb:x>O],

m C c,

m: [(z,y) € c: z < 0.00].
Half-rays h, / emanate from the point O, and half-rays k, m emanate from the point A. So we get
the alternate interior angles Z(h, 1), Z(k, m).

We have the vectors

OA= (0.00,1.00),
AO= (0.00, —1.00),
(1.00, 0.00)
(

OB=
AC= (-1.00,0.00),
and we get
(OA,0A)=1.00 > 0,
(AO,AO)=1.00 > 0,
(OB, 0B)= 1.00 > 0,
(AC,AC)=1.00 > 0,
and

(OA, OB): 0.00,
(AO, AC): 0.00.
This means that

OA= AO,
OB= AC,
and
/AOB = /ZCAO.

So in this case the answer to the question is positive.

So we have proved the following:

Theorem 7.24.
In Mathematics with Observers geometry in the plane EsW,,, there are two parallel lines that are cut
by a third straight line such that the alternate interior angles and also the exterior-interior angles are



congruent.

Theorem 7.25.

In Mathematics with Observers geometry in the plane EsW,, there are two parallel lines that are cut
by a third straight line such that the alternate interior angles and also the exterior-interior angles are
not congruent.

Conversely, if the alternate—interior or the exterior-interior angles are congruent, then the given

lines may be parallel or nonparallel.



8 Analysis of observability and
property of continuity (Archimedes’
ax1iom)

Classical geometry states:

Let A; be a point upon a straight line between arbitrarily
chosen points A and B. Let A, A3, A4, ... be points such that
A lies between A and A,, A, lies between A; and As, A3

lies between A, and Ay, etc. Moreover, let the segments
AAl) A1A27 A2A37 A3A47 s
be all equal. Then, among this series of points, there always

exists a point A,, such that B lies between A and A,,.

Question: Is this statement correct in Mathematics with

Observers geometry?

1) Let us take a straight line in EyW5,

a:99.99 xoxr —98.37 X9y =0,
and let us take the points

A(—0.62, —0.63), B(0.62, 0.63) € a
and the point 4;(0,0) € a between A and B.



As we can see from above, line g contains only three points A, B,
Aj. So, among any series of points, there is no point A,, such
that B lies between A and A,,. This means that in this case the

answer to the question is negative.

2) Let us take a straight line in EyWo,

the points

A(—3,0), B(3,0) € a,
and a point A;(0,0) € a between A and B. Let us take the
points

A2(]—7 0)7 A3(27 0)7 A3(37 0)7 A4(47 O)
So A; lies between A and A,, A, lies between A; and As, and

Aj lies between A, and A,4. Moreover, the segments

AA17 A1A27 A2A37 A3A4
are congruent to each other, and among this series of points,

there is a point

A, n=4,
such that B lies between A and A,,.

This means in this case the answer to the question is positive.



So we have proved the following:

Theorem 8.1.
In Mathematics with Observers geometry in the plane EoW,,, there

are a straight line a, points A € a, B € a, and

Ay, As, As, ... € asuch that Ay lies between A and As, A, lies
between A and As, As lies between A5 and Ay, etc. Moreover,
the segments AA1, A1Ay, AyAs, A3Ay, ... are equal to each
other, and among this series of points, there is a point A,, such that
B lies between A and A,,.

Theorem 8.2.

In Mathematics with Observers geometry in the plane ExW.,, there
are a straight line a, points A € a, B € a, and

Aq, Ay, As, ... € a such that Ay lies between A and As, As lies
between Aq and As, As lies between Ay and Ay, etc. Moreover,
the segments AA1, A1 Ay, AyAs, A3Ay, ... are equal to each
other, and that among this series of points, there is no point A,
such that B lies between A and A,,.



9 Observability and triangle

In classical Euclidean geometry a triangle is a figure formed by set of three distinct points A, B, C
not belonging to one straight line in EyW,, or E3W,,. These three points are called vertices of
the triangle. The segments connecting these three points are call the sides of the triangle. By
classical geometry definition two triangles ABC and A'B’C’ are said to be congruent if the
following congruences are fulfilled:

AB= A'B,
AC= A'C',
BC= B'C’,
LA= /A,
/B= /B,
/C=/C".

We have three classical Euclidean geometry statements.

Statement 1 (First theorem of congruence for triangles).

If for two triangles ABC and A’ B’C’, the congruences

AB= A'B,
AC=A'C’,
/A= /A,

hold, then the two triangles are congruent.

Statement 2 (Second theorem of congruence for triangles).

If in any two triangles, one side and two adjacent angles are respectively congruent, then the

triangles are congruent.

Statement 3 (Third theorem of congruence for triangles).

If two triangles have three sides of one triangle congruent to the corresponding three sides of

the other, then the triangles are congruent.

In this section, we consider this definition and these statements from Mathematics with
Observers point of view. Note that in Mathematics with Observers geometry, a straight line

containing points A, B or A, C or B, C may not exist. Moreover, even if these lines exist, then they



are not unique. The segment of an existing line connecting any two points is called a side of the
triangle. So a triangle may not have one, two, or three sides, or may have several sides
connecting some pairs of vertices. This means that when we deal with triangle ABC, it is
necessary to know which sides we consider. Another situation is also possible: in Mathematics
with Observers geometry, three sides exist, but vertices do not. In general, in Mathematics with
Observers geometry, some sides exist, and some vertices exist too. We consider these situations

in the next section.

9.1 Definition of congruence of triangles in Mathematics with
Observers geometry: variant of vertices

For E,W,, first, let us consider six points

A(mla y1)7 B(.’L‘z, y2)1 C("B?n y3)a A,($4, y4)7 B/(ZL'5, y5)7 C,(wfi) yﬁ) € E2Wn7
where A, B, C are distinct points, A’, B’, C" are distinct points, and pairs of points

(A,B),(4,0),(B,C), (4", B),(4,C"),(B,C")
may be points of existing straight lines or may be not. For all these points, we have the

corresponding vectors

a= (wlayl)ab - (w27y2)ac - ($3,y3),a/ — ($4,y4),b/ - (:r:5,y5),c' — (wﬁay(i) € E2Wn-
Let us consider the vectors in EoW,

AB=Db —,a=(z2 —nZ1,¥2 —n Y1),

AC=c—pa=(r3—*1,Y3 —n Y1),

BC=c— = ( —n T2,Y3 —n Y2),
A'B'= = (5 —n T4, Y5 —n Ya),
A C’— c’ = (26 —n T4, Y6 —n Y4),
B'C'=c' -, b = (26 —n T5,¥6 —n Ys5),

and the scalar products



(.272 —n xl) Xn (mZ -n 131) +n (y2 —n yl) Xn (y2 —n yl)a

(:L'?) -n xl)
(903 —n wz)

(AB, AB)

n ($3 —n 931) +n (y3 —n yl) Xn (y3 —n yl),
n ($3 —n m2) +n (y3 -n y2) Xn (y3 —n y2)a

X

(AC,AC)

X

(BC,BC)
(A'B',A'B')

(5 —n 4) Xn (T5 —n T4) +n (Y5 —n Ya) Xn (Y5 —n Y4),
(6 —n Ta) Xn (T6 —n T4) +n (Y6 —n Ya) Xn (Y6 —n Y4),
(6 —n 5) Xn (T —n T5) +n (Y6 —n ¥5) Xn (Y6 —n Ys),
(T2 —n 1) Xn (B3 —n T1) +0 (Y2 —n Y1) Xn (Y3 —n Y1),
(T2 —n 1) Xn (T3 —n T2) +0 (Y2 —n Y1) Xn (Y3 —n Y2),
= (3 —n 1) Xn (3 —n ©2) +n (Y3 —n Y1) Xn (Y3 —n ¥2),

(A'C’,A'C')

(B'C’,B'C)

A~ N

(AB,AC

(AB,BC
(AC,BC

(A,B/, Alc/

(5 —n T4) Xpn (T6 —n T4) +n (Y5 —n Y4) Xn (Y6 —n Ya),
- ($5 —n $4) Xn (mﬁ —n :L'5) +n (y5 —n y4) Xn (y6 -n y5)a

(A,B/, Blcl

(6 —n z4) Xn (L6 —n ©5) +n (Y6 —n Y4) Xn (Y6 —n Y5)

(A'C,B'C')

if



To —pT1 € Wna

Y2 —n Y1 € Why,
z3 —p 1 € Wy,
Ys —n Y1 € Wy,
3 —n T2 € Wy,
Ys —n Y2 € Wy,
x5 —n Ty € Wh,
Ys —n Ya € Wh,
Tg —n Ty € Wh,
Y6 —n Ya € Wy,
x6 —n T5 € Wh,
Y6 —n Ys € W,
(g —n 1) X (T2 —n 1) € Wy,
(y2 —n yl) Xn (y2 —n yl) € Wy,
(T3 —p 1) Xp (T3 —p 1) € Wy,
(Y3 —n Y1) Xn (Y3 —n y1) € Wh,
(T3 —p T2) Xy (T3 —p T2) € Wy,
(Y3 —nY2) Xn (Y3 —n y2) € Wy,
(x5 —n T4) Xpn (5 —n x4) € Wh,
(Ys —n Y4) Xn (Y5 —n Ys) € Wy,
(6 —n T4) Xn (T —n T4) € Wy,
(Y6 —n Ya) Xn (Y6 —n ya) € Wy,
(6 —n T5) Xn (T —n T5) € Wy,
(Y6 —n Ys) Xn (Y6 —n Ys5) € Wh,
(x2 —n 1) Xpn (23 —n 1) € Wh,
(Y2 —n Y1) Xn (Y3 —n Y1) € Wy,
(x2 —n 1) Xpn (23 —n x2) € Wh,
(Y2 —n Y1) Xn (Y3 —n Y2) € Wy,
(T3 —n 1) X (T3 —p T2) € Wy,



(Y3 —n Y1) Xn (Y3 —n Y2) € Wy,

(x5 —n T4) Xpn (T6 —n T4) € Wh,

(Ys —n Ya) Xn (Y6 —n Ys) € Wy,

(5 —n T4) Xn (T —n T5) € Wy,

(s —n ya) Xn (Y6 —n ¥s),

(L6 —n T4) Xp (T —p x5) € Wy,

(Y6 —n Ya) Xn (Y6 —n y5) € Wa,

(x2 —n 1) Xn (T2 —n 1) +n (Y2 —n Y1) Xn (Y2 —n y1) € Wi,
(T3 —n 1) X (T3 —p 1) +0n (Y3 —n Y1) Xn (Y3 —n Y1) € Wy,
(3 —n T2) Xp (T3 —n T2) +n (Y3 —n Y2) Xn (Y3 —n Y2) € Wi,
(5 —n T4) Xn (T5 —n T4) +n (Y5 —n Ya) Xn (Ys —n Ya) € Wiy,
(6 —n T4) Xn (T6 —n T4) +n (Y6 —n Y1) Xn (Y6 —n Y1) € Wi,
(6 —n T5) Xn (T6 —n T5) +n (Y6 —n Ys) Xn (Y6 —n Ys5) € Wi,
(2 —n 1) Xn (T3 —n 1) +n (Y2 —n Y1) Xn (Y3 —n y1) € Wi,
(T2 —n 1) Xn (T3 —n T2) +0 (Y2 —n Y1) Xn (Y3 —n Y2) € Wy,
(3 —n 1) Xpn (@3 —nx2) +n (Y3 —n Y1) Xn (Y3 —n y2) € Wh,
(T5 —n T4) Xn (T6 —n Ta) +n (Y5 —n Ya) Xn (Y6 —n Y4) € Wi,
(5 —n T4) Xn (T6 —n T5) +n (Y5 —n Ya) Xn (Y6 —n Ys) € Wh,
(x6 —n T4) Xn (T6 —n T5) +n (Y6 —n Y4) Xn (Y6 —n y5) € Wh.

Now we give the definition of congruence of triangles in Mathematics with Observers geometry.
First of all, three points A, B, C form triangle A ABC, and three points A’, B’, C' form a triangle
NA'B'C'if

AB H AC, A'B’ H A'C.
This means that there is no element o € W,, such that

AB =a x, AC
or there is no element 8 € W, such that

AC =3 x, AB.
Likewise, this means that there is no element v € W, such that

A'B' =yx,A'C,
or there is no element § € W, such that

A'C'=§x,A'B.
We call two triangles AABC and AA’B’'C’ congruent in Mathematics with Observers if the
following conditions are satisfied:



(AB,AB)= (A'B',A'B’) > 0,
(AC,AC)= (A'C',A'C') >0,
(BC,BC)= (B'C/,B'C’) > 0,
(AB,AC)= (A'B',A'C),
(BA,BC)= (B'A’,B'C/),
(CA,CB)= (C'A/,C'B’).

Let us now go to the thee-dimensional case. For E3W,, first, let us consider six points

A(z1,y1,21), B(z2, Y2, 22), C(23, Y3, 23), A’ (T4, Ya, 24), B' (5, Y5, 25), C' (26, Y6, 26) € EsW,
where A, B, C are distinct points, A’, B’, C' are distinct points, and the pairs of points

(A,B),(A,C),(B,C), (4",B),(4",C"), (B, C")
may be the points of existing straight lines or may be not. For these points, we have the
corresponding vectors

a= (1701,3/1,21),'3 = (a:Q,y2,z2),c - ("1"37y3az3)7

/ !/ /
a= (1704,3/4,24)7'3 = (a:5,y5,z5),c = (mﬁayﬁ’z6)7€ E3Wn
Let us consider the vectors in F3W,,

AB=b —,a= (22— T1,Y2 —n Y1,22 —n 21)

AC=c—pa= (23 —nT1,Y3 —n¥Y1,23 —n 21)

BC=c—»b = (23 —nT2,¥3s —n Y2,23 —n 22),
A'B'=b'—,a = (z5 —n 24,Y5 —n Y4, 25 —n 24),
A'C'=c' —,a' = (z6 —n 4, Y6 —n Y4, 26 —n 24),

B'C'=c —, b = (z6 —n T5,Y6 —n Y5, 26 —n 25),
and the scalar products



(2 —n 1) Xpn (T2 —n 1) +0n (Y2 —n Y1) Xn (Y2 —n Y1) +n (22 —n 21)

(AB, AB)

(AC,AC): (933 n 931) Xn (:173 —n :131) +n (y3 -n yl) Xn (y3 —n yl) +n (23 —n Zl) )

(BC,BC)
(A'B’,A'B'

(3 —pn 2) Xn (T3 —n T2) +0 (Y3 —n Y2) Xn (Y3 —n ¥2) +n (23 —n 22)
(x5 —n @4) Xn (5 —n T4) +0 (Y5 —n Y4) Xn (Ys —n Y4a) +n (25 —n 24)
(6 —n T4) Xn (26 —n T4) +n (Y6 —n Y4) Xn (Y6 —n Y4) +n (26 —n 24)
(6 —n 5) Xn (T6 —n ©5) +n (Y6 —n Ys) Xn (Y6 —n Ys) +n (26 —n 25)
(T —pn 1) Xn (23 —n 1) +0 (Y2 —n Y1) Xn (Y3 —n Y1) +n (22 —n 21)
(T2 —n 1) Xn (T3 —n 22) +n (Y2 —n Y1) Xn (Y3 —n Y2) +n (22 —n 21)
(3 —n 1) Xn (T3 —n T2) +n (Y3 —n Y1) Xn (Y3 —n Y2) +n (23 —n 21)

(375 —n in4) Xn (xﬁ —n $4) +n (y5 —n y4) Xn (y6 —n y4) +n (25 —n Z4) :
(:L'5 —n :L'4) Xn (mﬁ —n m5) +n (y5 -n y4) Xn (y6 -n y5) +n (Z5 -n Z4) :

~

~

~

(A'C’,A'C

—~
-~

(B'C',B'C

N N

(AB,AC

(AB,BC

(AC,BC
A'B',A'C)
A'B',B'C’)

A,C,aB,C,) = (mﬁ -n 934) Xn (xﬁ —n £L'5) +n (yﬁ —n y4) Xn (yG —n y5) +n (26 —n Z4) :

N— N N

Gy
—

Ty —p 1 € W,
Y2 —n Y1 € Wp,
22 —n 21 € Wy,
T3 —n T1 € Wh,
Ys —n Y1 € Wy,
Z3—nZ1€W,
x3 —p Ty € W,
Ys —n Y2 € Wh,
z3 —n 29 € Wy,
Ty —n Ty € W,
Ys —n Ya € Wh,
z5 —n 24 € Wh,
Lo —n T4 € Wh,

T2 52
xthy
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8 § &8 8 =
EefEs
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Xn (X3 —n x2) € Wh,
Y3 —n Y2) Xn (Y3 —n y2) € Wy,
Xp (23 —n 22) € Wy,
X (X5 —p T4) € W,
Ys —n Ys) Xn (Y5 —n ys) € Wy,
X

n (T3 —p 1) € Wy,
(Y3 —ny1) € Wy,

n (23 —n 21) € Wy,

n (T3 —n x2) € Wy,
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26 —n Z4) € Wn,
n (T —n x5) € Wy,
(Y6 —nys) € Wh,
n (26 —n 25) € Wy,
n (e —n 5) € W,
(yﬁ —n y5) € Wh,
n (26 —n 25) € Wy,
Xn (T2 —n 1) +n (Y2 —n Y1) Xn (Y2 —n Y1) € Wh,
T3 —n 1) Xn (T3 —n 1) +n (Y3 —n Y1) Xn (Y3 —n Y1) € Wy,
Xn (23 —n T2) +n (Y3 —n ¥2) Xn (Y3 —n Y2) € Wi,



(5 —n 2a) Xn (T5 —n T4) +n (Y5 —n Y1) Xn (Y5 —n Ys) € Wh,
(6 —n 1) Xn (X6 —n T4) +n (Y6 —n Y4) Xn (Y6 —n Y1) € Wh,
(6 —n T5) Xn (T6 —n T5) +n (Y6 —n Ys) Xn (Y6 —n Ys5) € Wh,
(T2 —n ®1) X0 (23 —n 1) +n (Y2 —n Y1) Xn (Y3 —n Y1) € Wi,
(T2 —n 1) Xn (€3 —n @2) +n (Y2 —n Y1) Xn (Y3 —n y2) € Wi,
(3 —n 1) Xn (T3 —n T2) 0 (Y3 —n Y1) Xn (Y3 —n Y2) € Wy,
(5 —n T4) Xn (T6 —n Ta) +n (Y5 —n Ya) Xn (Ys —n Ys) € Wy,
(5 —n T4) Xn (T6 —n ©5) +n (Ys —n Y4) Xn (Y6 —n ys5) € Wh,
(6 —n a) Xn (T6 —n T5) +n (Y6 —n Y1) Xn (Y6 —n Ys) € Wh,
(T2 —n 1) Xn (T2 —n T1) +0 (Y2 —n Y1) Xn (Y2 —n Y1) +n (22 —n 21) X (22 —n 21) € Wy,
(x3s —n 1) Xn (23 —n 1) +n (Y3 —n Y1) Xn (Y3 —n Y1) +n (23 —n 21) Xn (23 —n 21) € Wh,
(T3 —n @2) X5 (T3 —n T2) +0 (Y3 —n Y2) Xn (Y3 —n Y2) +n (23 —n 22) Xn (23 —p 22) € W,
(T5 —n @4) Xp (T5 —n Ta) T (Y5 —n Ya) Xn (Y5 —n Ya) +n (25 —n 24) X (25 —n 24) € Wi,
(6 —n T4) Xn (T6 —n 4) +n (Y6 —n Y4) Xn (Y6 —n Ya) +n (26 —n 24) Xn (26 —n 24) € Wi,
(6 —n 5) Xn (T6 —n T5) +n (Y6 —n ¥s) Xn (Y6 —n Us) Tn (26 —n 25) Xn (26 —n 25) € Wy,
(x2 —n 1) Xpn (3 —n 1) +n (Y2 —n Y1) Xn (Y3 —n Y1) +n (22 —n Zl) X (23 —n 21) € Wh,
(T2 —n 1) Xn (T3 —n T2) +0 (Y2 —n Y1) Xn (Y3 —n Y2) Tn (22 —n 21) Xn (23 —n 22) € Wy,
(3 —n 1) Xn (T3 —n T2) +n (Y3 —n Y1) Xn (Y3 —n Y2) +n (23 —n 21) Xn (23 —n 22) € Wy,
(5 —n 1) Xn (T6 —n T4) +n (Y5 —n Y4) Xn (Y6 —n Ya) +n (25 —n 24) Xn (26 —n 24) € Wi,
(25 —n ®4) Xn (T —n T5) +n (Ys —n Y1) Xn (Y6 —n Ys) +n (25 —n 24) Xn (26 —n 25) € W,
(6 —n T4) Xn (T6 —n T5) +n (Y6 —n Y1) Xn (Y6 —n Ys) +n (26 —n 24) Xn (26 —n 25) € Wi

As we did in the two-dimensional case, we give the definition of congruence of triangles in
Mathematics with Observers geometry. First, three points A, B, C form a triangle A ABC, and
three points A’, B’, C’ form a triangle AA’B'C" if

ABJAC, A'B'jA'C.
Likewise, this means that there is no element v € W,, such that
A'B' =yx,A'C,
or there is no element § € W,, such that
A'C'=§x,A'B.
Also, as in the two-dimensional case, we call two triangles AABC and AA’B’'C’ congruent in

Mathematics with Observers if the following conditions are satisfied:



(AB,AB)= (A'B',A'B’) > 0,
(AC,AC)= (A'C',A'C') >0,
(BC,BC)= (B'C/,B'C’) >0,
(AB,AC)= (A'B',A'C),
(BA,BC)= (B'A’,B'C/),
(CA,CB)= (C'A/,C'B’).

Note that for a, b, c € W,,, we assume that

a+,b+,c=(a+,b)+,c

9.2 Definition of congruence of triangles in Mathematics with
Observers geometry: variant of sides

For E,W,, or EsW,,, first, let us consider six points A, B, C, A’, B', C', where A, B, C are distinct
points, and A’, B, C' are distinct points, and the pairs of points (4, B), (4, C), (B, C),
(A, B, (A',C"), (B',C") are points of existing straight lines:

A, Bel,
A,Cem,
B,Cen
A Bel,
A, C'em/,
B.,C'en
Let us consider vectors in FsW,, or EsW,

AB,AC,BC,A'B’,A'C',B'C’
and the scalar products

(AB,AB),(AC,AC),(BC,BC), (A'B’,A'B'), (A'C',A'C'), (B'C',B'C').
We get

AelnNm,
Be lnn,
Ce mNn,
Aeclnm/,
Beclnn/,
C'e m' nn'.



Note that, generally, such intersections of lines may have more than one point. Let h, k be any

two distinct half-rays

A,Be h C,

A, CekCm
emanating from the point A, let p, g be any two distinct half-rays

B,AcpCl,
B,CeqCn
emanating from the point B, and let r, s be any two distinct half-rays

C,Ber Cn,

C,Ae sCm
emanating from the point C.

Let A/, k' be any two distinct half-rays
A,B'eh Cl,
A, C'ck cm/

emanating from the point A’, let p’, ¢’ be any two distinct half-rays
B,Acp cl,
B.,C'eq cn

emanating from the point B’, and let 7/, s’ be any two distinct half-rays
C',Bcr' cn,
C' Acs' cm

emanating from the point C’.

So we get six angles

Z(h, k), Z(p,q), Z(r,s), Z (h’, k'), é(p', q’), / (r', s’).
Now we are ready to formulate the second definition of congruence of triangles, from the point

of view of sides. We write

ANABC = NA'B'C’

if the following conditions are satisfied.

(1) The congruence of sides:



(AB,AB)= (A'B',A'B’) > 0,

(AC,AC)= (A'C',A'C') >0,

(BC,BC)= (B'C/,B'C’) > 0;
(2) There are four points

Dch, Eck, D' ech/, E ck
such that

(AD,AD)= (A'D’,A'D’) > 0,
(AE,AE)= (A'E’,A'E’) > 0,
(AD,AE)= (A'D’,A'E');

(3) There are four points

Fep, Geq, F'ep, G eqg
such that

(BF,BF)= (B'F/,B'F') > 0,
(BG,BG)= (B'G/,B'G’) >0,
(BF,BG)= (B'F',B'G’).

(4) There are four points

Her, Ics, Her, seq
such that

(CH,CH)= (C'H',C'H’) > 0,
(CL CI)= (C'T,C'T) >0,
(CH, CI)= (C'H/,CT).

We assume that all elements participating in the previous equalities belong to W,.

Note that in the situation where three points A, B, C lie by pairs on straight lines and the other

three points A’, B’, C' lie by pairs on straight lines, both variants (vertices and sides) work. If

NABC = NA'B'C’
by “vertex variant”, then the same holds by “side variant”. However, if

NABC = ANA'B'C’

by “side variant”, then the same does not necessarily hold by “vertex variant”.



9.3 Triangles formed by two perpendiculars to one line

Let us consider E5W,. Suppose we have two straight lines in EyWo,

a:99.99 X9 —598.37T X y=20
and

b:98.37 X9 —999.99 X, y=0,
having a common point O(0, 0).

Let h, k be two distinct half-rays

h Ca,
h:[(z,y) €a:z >0,
and

k Cb,
k:|[(z,y)€b:z>0],
emanating from the point 0. So we get Z(h, k).

Let us take the points

A(0.62,0.63)€ h,
B(0.63,0.62)€ k
and the corresponding vectors

OA= (0.62,0.63),
OB= (0.63,0.62).
We get

(OA,0A)=10.72 > 0,
(OB,0B)=0.72 > 0.
Let us build a straight line ¢ containing points A, B:

c:C1 X9 +9Co X2y+203:0,
that is,

c1 X2 0.62 435 c2 X20.63 +2c3 =0,
C1 X9 0.63 “+9 Co X9 0.62 +ocC3 = 0.
So



C1 X9 0.62 +9 Cy Xo 0.63 = C1 X9 0.63 +9 Coy X9 062,
c1 X20.63 4+2c2 x20.62 45 c3 =0,
and

{Cl X9 0.62 —9C1 X9 0.63 = Co9 X9 0.62 —9 Cy X9 063,
c1 X20.63 +2c2 X90.62 43 c3 =0.
Let us consider a solution of this system:

C1 = ].,
Cy = 1,
c3 = —1.25,

that is, line ¢ has the equation

c:x+oy—o1.25=0.
So we get two half-rays

1) c,

1 [(z,y) € c:z > 0.62],
and

gCa,
g:[(z,y) €a:x<0.62],
emanating from the point A. So we get Z(I(V, g).

Also, we get two half-rays

1% c,

12 [(z,y) € c: 2 < 0.63],
and

fChb,
f:|(z,y) €b:z <0.63],
emanating from the point B. So we get Z(I?, f).

So we get a triangle O A B with vertices O, A, B and two half-rays (h, k) emanating from vertex

O, passing, respectively, through A and B, and forming

Z(h,k) = £0.
Also, (l(l), g) are two half-rays emanating from vertex A, passing, respectively, through B and O,

and forming



Z(1M, g) = 24,
and (I (2), f) are two half-rays emanating from vertex B, passing, respectively, through A and O,

and forming

£(1®) f) = «B.
Let us consider angles /A, /B and take points K, L € c:

K(3,-1.75)e 1V,

L(—1.75,3)e 1?,
and the corresponding vectors

AK= (2.38, —2.38),
BL= (—2.38, 2.38).
Also, we have

AO= (—0.62, —0.63),
BO= (—0.63, —0.62).

We get
(AK, AK): 11.22 > 0,
(BL,BL): 11.22 > 0,
(AO, AO): 0.72 > 0,
(BO,BO): 0.72 > 0,
and
(AK, AO): 0,
(BL, BO): 0.

This means that

/0OAK = /OBL,
and both these angles are right angles, that is, the half-rays f, g form right angles with

corresponding half-rays of line ¢ and intersect in point O.

So we have proved the following:

Theorem 9.1.
In Mathematics with Observers geometry in the plane EoW,, there is a triangle ABC such that
/B € ABC and £C € ABC are right angles.

Classical Euclidean geometry states:

“The sum of the angles of a triangle equals two right angles.”



Question: Is this statement correct in Mathematics with Observers geometry?

The answer to this question in this case is negative because we have proved the following:

Theorem 9.2.
In Mathematics with Observers geometry in the plane EoW,, there is a triangle ABC such that the

sum of the angles of this triangle is greater than two right angles.

9.4 Statement —1. First theorem of congruence for triangles

Let us reformulate the first statement of congruence for triangles in Mathematics with
Observers geometry.

For E5W,, let us consider six points

A(xla yl)’ B(w% y?)’ 0(1133, ?/3)7 AI(:B4, y4)’ B,(£E5, y5)’ C,(mﬁ’ y6) € E2Wn
where A, B, C are distinct points, A’, B’, C' are distinct points, and the pairs of points
(A,B),(A,C),(B,C), (4",B),(4",C"), (B, C")
may or may not be the points of existing straight lines. For all these points, we have the

corresponding vectors

a= (z1,¥1),b = (z2,y2),¢c = (23,y3),a = (z4,94),b’ = (z5,¥5),¢ = (z6,y6) € E2W,,.
Let us consider the vectors in FoW,

AB= b—na—( —n T1,Y2 _nyl)a
AC=c—pa= ( —nZ1,Y3 —n yl)a

BCZC— ( —n T2,Y3 —n Y2),
A'B'= = (5 —n T4, Y5 —n Ya),
A C'— ¢ —na = (z6—nT4,Y6 —n ya),
B'C'=c —,b = (z6 —n 5,9 —n¥Ys5),

and the scalar products



(AB,AB)= (22 —n %1) Xpn (2 —n 21) +n (Y2 —n Y1) X0 (Y2 —n Y1),
(AC,AC)= (23 —nz1) Xn (23 —n x1) +n (Y3 —n y1) Xn (Y3 —n Y1),
(BC,BC)= (23 —n 2) X (T3 —n T2) +n (Y3 —n ¥2) Xn (Y3 —n Y2),
(A'B',A'B')= (25 —n @4) Xn (T5 —n T4) +n (Y5 —n Y1) Xn (Y5 —n Y1),
(A'C',A'C')= (26 —n x4) Xn (T —n Ta) +n (Y6 —n Y1) X5 (Y6 —n Ya),
(B C',B C/) (6 —n 5) Xn (T —n T5) +n (Y6 —n ¥s) Xn (Y6 —n Ys),
(AB,AC)= (z2 —n 1) Xn (T3 —n 1) +n (Y2 —n Y1) Xn (Y3 —n Y1),
(AB,BC)= (z3 —y #1) Xpn (T3 —p T2) +n (Y2 —n Y1) Xn (Y3 —n ¥2),
(AC,BC)= (z3 —n 1) Xn (3 —n T2) +n (Y3 —n Y1) Xn (Y3 —n ¥2),
(A'B',A'C')= (x5 —n x4) Xn (T6 —n T4) +n (Y5 —n Y4) Xn (Y6 —n Y4),
(A'B',B'C')= (5 —n 1) X5 (T6 —n ©5) +n (Y5 —n Y1) Xn (Y6 —n ¥5),
(A'C',B'C')= (z6 —n x4) Xn (T6 —n T5) +n (Y6 —n Y1) Xn (Y6 —n Ys5).

So we get a question (analogue of first statement): If
(AB,AB)= (A'B',A'B’) >0,
(AC,AC)= (A'C',A'C') >0
(AB,AC) (A'B’, A'C’),

then do we have

(BC,BC)= (B'C/,B'C’') >0

(BA,BC)= (B'A’,B'C'),

(CA,CB)= (C’A',C'B’)?
Let us consider several cases.

1) Let n = 2, and let

A(O, 0), B(O.98, —0.03), C(—0.02, 0.97), A’(O, 0), B’(—0.04, 0.99), C'(0.96, —0.01).
Then

= (0,0),b = (1,-0.03),c = (—0.02,1),a’ = (0,0),b’ = (—0.04,1),¢’ = (1,-0.01)
AB=b —,a=(1,-0.03),
AC=c—,a=(-0.02,1),
BC—c— b = (~1.02,1.03),

A'B'=b' —,a’ = (-0.04,1),
AC'—c —pa' = (1,-0.01),
B'C'=c —, b’ = (1.04,—1.01).
We get



(AB,AB)= (A'B’,A'B') =1 >0,
(AC,AC)= (A'C’,A'C') =1>0,
(AB,AC)= (A'B’,A'C’) = —0.05

and
(BC,BC)= (B'C',B'C') =2.10 > 0,
(BA,BC)= (B’A’,B’C') = 1.05,
(CA,CB)= (C'A/,C'B’) = 1.05.

So we get

NABC = NA'B'C’
by both “vertex variant” and “side variant”. This means that the answer to the question in this

case is positive.
2) Let n = 2, and let

A(O, 0), P(O, 1.36), Q(1.50, 0), A'(O, 2.14), P'(—l.OO, 1.23), Q'(l.OO, 1.02).
Then

a= (0,0),p = (0,1.36), q = (1.50,0),a’ = (0,2.14), p' = (—1.00,1.23),q’ = (1.00, 1.0
AP=p —,a=(0,1.36),
AQ=q —,a=(150,0),
PQ=q—, p = (1.50,-1.36),
A'P'=p' —,a" = (-1.00,-0.91),
A'Q'=q —na = (1.00,-1.12),
P'Q'=q —np = (2.00,-0.21).

We get
(AP, AP)= (A'P',A'P') =1.81 > 0,
(AQ,AQ)= (A’Q',A'Q') =2.25 >0,
(AP,AQ)= (A’P’,A’Q') =0,
that is,
AP=A'P/,
AQ=A'Q/,

/(PAQ)= £(P'A'Q"),

and we have



(PQ, PQ): 4.06,
(P'Q', P’Q'): 4.04,
that is,

(PQ,PQ) # (P'Q,P'Q).

So we get

NAPQ # NA'P'Q’
by both “vertex variant” and “side variant”. This means that the answer to the question in this

case is negative.

So we have proved th following:

Theorem 9.3.

In Mathematics with Observers geometry in the plane EsW.,,, there are two distinct triangles ABC
and A' B'C" with congruences AB = A'B', AC = A'C', ZA = £ A’ such that these triangles are
congruent, thatis, AB= A'B', AC = A'C'’, BC=B'C', /A= /A", /B= /B,
/C=/C".

Theorem 9.4,

In Mathematics with Observers geometry in the plane EsW,,, there are two distinct triangles ABC
and A' B'C" with congruences AB = A'B', AC = A'C’', ZA = £ A’ such that these triangles are
not congruent.

9.5 Statement —2. Second theorem of congruence for triangles

Let us reformulate the second statement of congruence for triangles in Mathematics with
Observers geometry.

For E2Wp, let us consider six points

A(xb yl)’ B(w% y?)’ 0(5133, y3)7 AI(:E4, y4), Bl(x5> y5)’ C,(mﬁ, yG) € EQWn’
where A, B, C are distinct points, A’, B’, C"' are distinct points, and pairs of points

(A,B),(A,C),(B,C), (4",B),(4",C"), (B, C")
may or may not be the points of existing straight lines. For these points, we have the

corresponding vectors

a= (wl’yl)’b = (:Ez?y?)’c = (:Eg,yg),a, = ($4,y4), "= (ﬂfs,ys),cl = (xﬁayfi) € ExW,.
Let us consider the vectors in FoW,,



AB=b —pa= (:L'? —nT1,Y2 —n y1)7
AC=c—pa= (m3 —nZ1,Y3 —n yl)a
BC=c —n b = (-’133 —n2,Y3 —n y2)’
A'B'=b' —,a' = (x5 —p 4, Y5 —1n Y4),
A'C'=c' —,a' = (z6 —n 4,96 —n Y4),
B'C'=c' -, b = (z6 —n 5,96 —n Y5),
and the scalar products

(AB,AB)= (22 —n 1) Xn (2 —n 1) +n (Y2 —n ¥1) Xn (Y2 —n Y1),
(AC,AC)= (z3 —n 1) Xn (T3 —n 1) +n (Y3 —n Y1) Xn (Y3 —n Y1),
(BC,BC)= (23 —n 2) X (T3 —n T2) +n (Y3 —n ¥2) Xn (Y3 —n Y2),
(A'B', A'B')= (25 —p T4) Xn (T5 —1 T1) +n (U5 —n Y4) Xn (Y5 —n Ya),
(A'C',A'C')= (26 —n ®4) Xn (T —n @4) +n (Y6 —n Y4) Xn (Y6 —n Y4),
(B'C',B'C')= (w6 —n T5) Xn (T6 —n T5) +n (Y6 —n ¥s) Xn (Y6 —n ¥5),
(AB,AC)= (z2 —n 1) Xn (T3 —n 1) +n (Y2 —n Y1) Xn (Y3 —n Y1),
(AB,BC)= (22 —n #1) Xn (T3 —n T2) +n (Y2 —n Y1) Xn (Y3 —n Y2),
(AC,BC)= (23 —p 1) Xn (T3 —n Z2) +n (Y3 —n Y1) Xn (Y3 —n ¥2),
(A'B',A'C')= (25 —p x4) X (T —n Ta) +n (Y5 —n Y1) X5 (Y6 —n Ya),
(A'B',B'C')= (5 —n 1) X5 (T6 —n ©5) +n (Y5 —n Y1) Xn (Y6 —n Y5),
(A'C",B'C')= (x5 —n ®4) Xn (T —n @5) +n (Y6 —n Y4) Xn (Us —n ¥5)

So we get a question (analogue of the second statement): If

(AB,AB)= (A'B',A'B’) > 0,
(AB,AC)= (A'B',A'C'),
(BA,BC)= (B'A’,B'C'),

then do we have
(AC,AC)= (A'C',A'C') >0,
(BC,BC)= (B'C/,B'C’) > 0,
(CA,CB)= (C'A’,C’B’)?
Let us consider several cases.

1) Let n = 2, and let

A(O, 0), B(0.98, —0.03), C(—0.02, 0.97), A'((), 0), B'(—0.04, 0.99), C'(0.96, —0.01).
Then



— (0,0),b = (1, 003) = (—0.02,1),a’ = (0,0),b’ = (—0.04,1),¢' = (1,-0.01)
AB b—,a= (1 03),
AC=c - , 1),
BC_c— b= ( 102103)
A'B'=b' —,a’ = (-0.04,1),

AC’_c —na' = (1,-0.01),
B'C'=c —, b’ = (1.04,-1.01).

We get
(AB,AB)= (A'B’,A'B’) =1 >0,
(AB,AC)= (A'B/,A'C’) = —0.05,
(BA,BC)= (B'A’,B'C’) = 1.05,
and

(AC,AC)= (A’C’,A'C’) =1>0,

(BC,BC)= (B'C/,B'C’) =2.10 > 0,

(CA,CB)= (C'A’,C'B’) = 1.05.
This means that the answer to the question in this case is positive.

2) Let n = 2, and let

A(O, O), B(2.38, 0), C(1.40, 2.59), A'(3.17, 1.66), B'(5.55, 1.66), C'(4.59, 4.27).
Then

a= (0,0),b = (2.38,0), c = (1.40, 2.59),
a'== (3.17,1.66), b’ = (5.55,1.66), ¢’ = (4.59,4.27) € ExW>,
AB=b —, a = (2.38,0),
AC=c —, a=(1.40,2.59),
BC=c —, b = (—0.98,2.59),
A'B'=b' —, a' = (2.38,0),
A'C'=c' —,a' =(1.42,2.61),
B'C'=c —, b’ = (~0.96,2.61).
We get

(AB,AB)= (A'B',A'B’) =5.61 > 0,
(AC,AC)=8.57,
(A'C',A'C")=8.80,
that is,



(AC,AC) # (A'C',A'C),

and
(AB, AC)= 3.30,
(A'B',A'C")=3.34,
that is,
(AB,AC) # (A'B',A’C'),
and
(BC,BC)= 7.42,
(B'C’,B'C')="7.61,
that is,
(BC,BC) # (B'C',B’C’),
and
(AB,BC)= —2.23,
(A'B',B'C")= —2.19,
that is,
(AB,BC) # (A’B’,B'C').
So we get

NABC # NA'B'C'

by “vertex variant”.
Let us now consider the “side variant”. First of all, we have to clarify the situation here:

* are A, B points of an existing straight line?
* are A, C points of an existing straight line?
e are B, C points of an existing straight line?
e are A’, B points of an existing straight line?
e are A’, C’ points of an existing straight line?

e are B’, C' points of an existing straight line?
We get
* A, B are points of the existing straight line in £, W, with equation

l:y=0;
* A, Care points of the existing straight line in E3W5 with equation



m:y =187 Xy x;
* B, Care points of the existing straight line in £, W, with equation
p:ry=—2.69 Xy +,6.32;
A’, B’ are points of the existing straight line in E5W, with equation
I':y=1.66;
o A’, C' are points of the existing straight line in FoW, with equation
m':y=1.87 Xy x —24.20;
e B, C' are points of the existing straight line in E5W5 with equation
p iy=—2.69 X2 x +216.51.

We have

AelnNm,
Acel'nm.
Let h, k be two distinct half-rays
h Cl,

h:(z,y)el, z=>0,
and

kCm,

k:(xz,y) €m, x>0,
emanating from the point A. The system formed by these two half-rays h, k is an angle and is
represented by the symbol Z(h, k) or Z(k, h).

Also, let b/, k' are two distinct half-rays

hcl,
R (zyy)el, =z>3.17,
and

E cm,

kK:(z,y) em', z>3.17,
emanating from the point A’. The system formed by these two half-rays A/, k' is an angle and is
represented by the symbol Z(h', k') or Z(kK', h’).

We also have

Be lnp,
Belnyp.
Let g, r be two distinct half-rays



qCl,
q: (z,y)el, z<2.38,
and

r Cp,

r:(z,y) €p, z=<2.38,
emanating from the point B. The system formed by these two half-rays g, r is an angle and is
represented by the symbol Z(g,7) or Z(r, q).

Also, let g, v’ be two distinct half-rays

qg cl,
q :(z,y)€l'; z<5.55,
and

e p',
r':(z,y) €p, =z <5.55,
emanating from the point B’. The system formed by these two half-rays ¢’, 7’ is an angle and is

represented by the symbol Z(¢’, ") or Z(7',q’).

Let us take the points
P(1,1.87)€ k,
P'(4.17,3.53)c K.
Then
AP = A'P' = (1,1.87),
and we get
(AP,AP)= (A'P',A'P’) = 4.38 > 0,
(AB,AP)= (A’B’,A’P’),
that is,

/(Bh, Pk) = Z(B'W,P'K).
In this case, we say that

/BAC = /Z(Bh, Pk)
is congruent to
/B'A'C'" = Z(B'W,P'K)

and write



/BAC = /B'A'C".
This means that in Mathematics with Observers geometry, we do not define the congruence of
the angles Z(h, k) and Z(h', k). We can define it only in the case where for any points P, Q, P’,
Q' satisfying the above conditions, we have

Z(Ph,Qk) = Z(P'W,Q'K).
Then

L(hyk) = Z(W,K).
Now let us consider the angles Z/ABC and /A’ B'C’. Let us take the points

Q(1.38,2.69)€ r,
Q'(4.55,4.35)c 1.

Then
QB =Q'B' = (1,—-2.69),
and we get
(QB,QB)= (Q’B', Q'B’) =8.12 >0,
(AB,QB)= (A'B’,Q'B),
that is,

Z(Aq,Qr) = £(A'q,Q'r").

In this case, we say that

/ABC = Z(Aq,Qr)
is congruent to

ZA,B,C, — A(A,ql, erl)

and write

/ABC = /A'B'C'.
So in this case, in “side variant”, we have

AB = A’ B’,
that is,

AB= A'B,
/BAC= /B'A'C’,
/ABC= /A'B'C’,
but



AC# A'C,
BC# B'C'.

This means that in this case,

NABC # NA'B'C’

by “side variant”, that is, the answer to the question in this case is negative.

So, we proved

Theorem 9.5.

In Mathematics with Observers geometry in the plane EoW,, there are two distinct triangles ABC
and A' B'C" with congruences BC = B'C', /B = /B', ZC = ZC" such that these triangles are
congruent, thatis, AB= A'B', AC=A'C', BC=B'C', /A= /A", /B= /B,
/C=/C".

Theorem 9.6.

In Mathematics with Observers geometry in the plane EoW,, there are two distinct triangles ABC
and A’ B'C" with congruences BC = B'C', /B = /B', ZC = ZC" such that these triangles are
not congruent.

9.6 Statement —3. Third theorem of congruence for triangles

Let us reformulate the third statement of congruence for triangles in Mathematics with

Observers geometry.

For EoW,, first, let us consider six points

A(wlayl)aB(w2ay2)aC(w3ay3)aA,(m4ay4)7B/($5ay5)7C,(w67y6) € E,W,
where A, B, C are distinct points, A’, B’, C"' are distinct points, and pairs of points

(A,B),(4,0),(B,C), (A", B),(4",C"),(B,C")
may or may not be points of existing straight lines. For these points, we have the corresponding

vectors

a = (wlayl)ab = (w27y2)ac = ($3,y3),a/ = (w47y4)7b, = (:1:5,y5),c' = (mﬁayG) S EZWn-
Let us consider the vectors in Ey W,



and the scalar products

(AB,AB)= (22 —n 1) Xn (2 —n T1) +n (Y2 —n Y1) Xn (¥2 —n Y1),
(AC,AC)= (23 —n 1) Xn (3 —n 1) +n (Y3 —n Y1) Xn (Y3 —n Y1),
(BC,BC)= (23 —n 2) Xpn (T3 —n T2) +n (Y3 —n ¥2) Xn (Y3 —n Y2),
(A'B',A'B')= (25 —n 24) Xn (€5 —n T4) +n (Y5 —n Y4) Xn (Y5 —n Y4),

(A'C",B'C’)= (x5 —n 24) Xn (T6 —n 5) +n (Y6 —n Ya
So we get the following question (analogue of third statement): If

(AB,AB)= (A'B',A'B’) >0,

(AC,AC)= (A'C',A'C') >0,

(BC,BC)= (B'C/,B'C’) > 0,
then is it correct that

(AB,AC)= (A'B',A'C/),

(BA,BC)= (B'A’,B'C/),

(CA,CB)= (C’A', C'B’)?
Let us consider several cases.

1) Let n = 2, and let

A(O, 0), B(O.98, —0.03), C’(—0.02, 0.97), A’(O, 0), B'(—0.04, 0.99), C'(0.96, —0.01).
Then

a= (0,0),b = (1,-0.03),c = (—0.02,1),a’ = (0,0),b’ = (—0.04,1),c' = (1,—0.01)
AB=b —,a=(1,-0.03),
AC=c—,a=(-0.02,1),
BC=c —, b = (~1.02,1.03),
A'B'=b' —,a' = (~0.04,1),
A'C'=c¢' —,a = (1,-0.01),
B'C'=c —, b’ = (1.04, -1.01),



and we get

(AB,AB)= (A'B’,A'B’) =1 >0,

(AC,AC)= (A'C',A'C') =1>0,

(BC,BC)= (B'C/,B'C’) =2.10 > 0,
and

(AB,AC)= (A'B’,A'C') = —0.05,

(BA,BC)= (B’A’,B’C’) = 1.05,

(CA,CB)= (C'A’,C'B’) = 1.05.
This means that the answer to the question in this case is positive.

2) Let n = 2, and let

A(O, 0), B(O, 1), C(0.82, 0.53), A'(O, 0), B'(O, 1), C’(0.85, 0.56).
Then

a= (0,0),b = (1,0),c = (0.82,0.53),a’ = (0,0),b’ = (1,0), ¢’ = (0.85,0.56) € E;W,,
AB=b —,a=(1,0),
AC=c —,a=(0.82,0.53),
BC=c—,b = (—0.18,0.53),
A'B'=b' —,a’ = (1,0),
A'C'=c —, a' = (0.85,0.56),
B'C'=c' —, b’ = (—0.15,0.56),

and we get
(AB,AB)= (A'B',A'B’) =1 >0,
(AC,AC)= (A'C',A'C’) =0.89 >0,
(BC,BC)= (B'C/,B'C’) =0.26 > 0,
and
(AB,AC)=0.82,
(A'B',A'C")=0.86
that is,

(AB,AC)# (A'B',A'C'),
(BA,BC)=0.18,
(B’A’,B'C')=0.15,
that is,



(BA,BC)# (B'A/,B'C),
(CA,CB)= (C'A/,C'B) = 0.33.

This means that the answer to this question in this case is negative by “vertex variant”.

So we have proved the following:

Theorem 9.7.

In Mathematics with Observers geometry in the plane EoW,, there are two distinct triangles ABC
and A' B'C" with congruences AB = A'B', AC = A'C’, BC = B'C’ such that these triangles
are congruent, thatis, AB= A'B', AC=A'C’, BC=B'C', /A= /A", /B= /B,
/C=/0C".

Theorem 9.8.

In Mathematics with Observers geometry in the plane EoW,, there are two distinct triangles ABC
and A’ B'C" with congruences AB = A'B’, AC = A'C’, BC = B'C’ such that these triangles
are not congruent.

9.7 Isosceles triangles

A triangle ABC we call an isosceles triangle if two of its sides are congruent, for example, if

AB = BC.
In this case, the point B is called a vertex of the triangle, the side AC is called a base of the
triangle, and the sides AB and BC' are called lateral sides of the triangle.

In this section, we consider the question: In an isosceles triangle A BC with base AC, is it
correct that

/BAC = ZBCA?
1) First we consider a triangle given by its vertices, not by its sides. Let us take three points as the
vertices of a triangle OAB,

0(0,0), A(0.66,0.84), B(1,0) € E;W,,
and the corresponding vectors

OA= (0.66,0.84),
AO= (—0.66, —0.84),
OB= (1,0),

BO= (

AB= (0.34,—0.16),
BA= (

A= (—0.34,0.16).
We get



(OA,0A)=1>0,
(AO,AO0)=1>0,
(OB,0B)=1 > 0,
(BO,BO)=1 > 0,
(AB,AB)=0.10 > 0,
(BA,BA)=0.10 > 0.
We have
AO= BO,
AB= BA,
and
(AO,AB)= —-0.10,
(BO,BA)=0.34,
that is,

/0OAB # /0OBA.
This means that the answer to the question in this case is negative.

2) Let us take two straight lines in Fo W,

a:1.14><2m—2y:0
and

b:1.28 ><2$-2y:0,
and points O, A € a,0, B € b:

0(0,0), A(1.71,1.92), B(1.60, 2.00).
Let us take these three points as the vertices of the triangle OAB and, as we did in part 1) of this
section, forget straight lines a and b.

We consider the corresponding vectors

OA= (1.71,1.92),
AO= (—1.71,-1.92),
OB= (1.60,2.00),
BO= (—1.60, —2.00),
AB= (—0.11,0.08),
BA= (0.11,—0.08),

and we get



(OA,0A)=1.56 > 0,
(AO,AO)=1.56 > 0,
(OB,0B)=1.56 > 0,
(BO,BO)=1.56 > 0,
(AB,AB)=0.01 > 0,
(BA,BA)=0.01 > 0.
We have
AO= BO,
AB= BA,
and
(AO, AB)=0.10,
(BO,BA)= —0.01,
that is,

/0OAB # /0OBA.
This means that the answer to this question in this case is negative.

3) Let us consider straight line a containing points O, A,

a:a; X9& +9as ><2y—|—2a3:0,
that is,

ay Xo0+2as Xx20+2a3 =0,
a1 Xo 0.66 +2 as Xo 0.84 +2a3 = 0.
One possible solution is

az =0,
a; = 134,
az — —1,

that is, straight line a has the equation

a:134 xox—2y=20
Let straight line b containing points O, B have the equation

b:y=0.
Let us build strait line ¢ containing points A, B,

c:c1 Xox+2c2 X2y+2c3 =0,
that is,



{Cl X9 0.66 +9 €y Xg 0.84 +ocC3 = 0,
c1 X21+9c92 X20+2c3=0.

One possible solution is

C1 = 240,
Cy = 1,
C3 = —2.40,

that is, straight line c has the equation

c:2.40 Xo & +2UY —2 2.40 = 0.
This means that the triangle O A B has vertices and sides.

Let us now take the points

0'(0,0) eand, A'(1.23,1.63) €a, B'(2.03,0)cb
and consider these three points as vertices of the triangle O’ A’ B’. Let us take the corresponding

vectors

O'A'= (1.23,1.63),
A'O'= (—1.23,-1.63),
O'B'= (2.03,0),
B'O'= (—2.03,0),
A'B'= (0.80,—1.63),
B'A'= (—0.80,1.63).
We get

4.12 > 0,
4.12 > 0,
4.12 > 0,
4.12 > 0,
3.26 > 0,
3.26 > 0.

(O'A’,0'A’
(A'0’,A'0
(O'B’,0'B’
(B'0’,B'O’
(A'B',A'B’
(B'A",B'A’

)=
)=
)=
)=
)=
)=

We have

A'0O'=B'O'
A'B'=BA
and
(A'O’,A'B’)= —1.31,
(B'O’,B'A’)= —1.60,



that is,

LO'A'B' £ L0'B'A'.
Lets now take other points

0"(0,0) eand, A"(2.25,2.99) ca, B"(3.72,0)€b
and consider these three points as vertices of the triangle O” A” B”. Let us take the

corresponding vectors
O"A"= (2.25,2.99),
A"Q"= (-2.25,-2.99),
O"B"= (3.72,0),
B"0"= (-3.72,0),
A"B"= (1.47,-2.99),
B"A"= (—1.47,2.99).
We get
( O"A",0 ”A"): 13.81 > 0,
(A"0",A"0")=13.81 > 0,
(0"B",0"B")=13.81 > 0,
( B"0O" B”O"): 13.81 > 0,
(A”B" A"B”): 8.33 > 0,
( B"A",B ”A”) 8.33 > 0.
We have
A"0"= B"0",
A"B"=B"A",
and
(A"O”, A”B"): 5.50,
(B”O”, B”A”): 5.41
that is,

AO”A”B” §_é éol/BIIAII
This means that the answer to this question in this case is negative.

4) Again, let us consider EoW, and two straight lines in oW,

a:xz=0
and



b:y=0,
having a common point O(0, 0).

Let h, k be two distinct half-rays

h C a,

h: [(m,y)ea:y>0},
and

kCb,
k:[(z,y)€b:z>0],
emanating from the point 0. So we get Z(h, k).

Let us take the points

and the corresponding vectors

OA=(0,1),

OB= (1,0),

AB= OB —, OA = (1,-1).
We get

(OA,0A)
(OB, OB)
(AB, AB)
(OA,0B)
Let us build strait line ¢ containing points A, B:

1>
1>
2,
0.

c:Ci X2$+202 X2y+203:0,
that is,

{Cl X20+262 X21—|—263:0,
c1 X2142c2 x20+2¢3 =0,
and so

{Cz =y,
c1+2c3=0.

Let us consider a solution of this system,



that is, straight line ¢ has the equation

c:x+2y—21=0.
So we get two half-rays

' ce,
':[(z,y) €c:z>0],
and

9 Ca,

g: [(z,y) €a:y<1],
emanating from the point A. So we get Z(I1, g).

Also, we get two half-rays

2 Ce,
P:[(z,y) €c:y>0],
and

fcb,

fil(zy) eba<1],
emanating from the point B. So we get /(12 f).

So we get a triangle O A B with vertices O, A, B and two half-rays (h, k) emanating from vertex

0, passing, respectively, through A and B, and forming

Z(h,k) = LAOB.
Also, (ll, g) are two half-rays emanating from vertex A, passing, respectively, through B and O,

and forming

Z(I',9) = ZOAB,
and (l2, f) are two half-rays emanating from vertex B, passing, respectively, through A and O,

and forming

£(1%,f) = LOBA,
and we get the vectors



AB= (1,-1),
BA= (—1,1),
AO= (-1,0),
BO= (0, 1),
and
(AO,AB)= -1,
(BO,BA)= —1.

This means that the triangle AOB is an isosceles triangle with lateral sides

AO = OB
and base AB, and we get

/0OAB = Z0OBA,
that is, in this case the answer to this question is positive.

So we have proved the following:

Theorem 9.9.

In Mathematics with Observers geometry in the plane EoW,,, there is an isosceles triangle ABC' with
AB = BC such that /BAC = /BCA.

Theorem 9.10.

In Mathematics with Observers geometry in the plane EoW,,, there is an isosceles triangle ABC' with
AB = BC such that /BAC # /BCA.

9.8 Similar triangles

1) Let us take two straight lines in FoWs,

a:x—2y=20
and

b:y=0,
and the points

O,A1,As,As€a; O,B1,By,Bs€b:
0(0,0), A;(1.00,1.00), A5(2.00,2.00), A3(3.00, 3.00), B;(1.00,0.00), B>(2.00,0.00),
B3(3.00,0.00).

Also, let us consider three straight lines ¢, d, e € EsW,,



c:zx =1,
d:z =2,
e:x=3.
These three vertical lines are parallel in the Euclidean sense. We have

A1,B1€c; Ay,Byed; As,Bsce.
Now let us consider the triangles OA1 B1, OA2B2, OA3B3. We consider the corresponding
vectors

= (1.00, 1.00),
OA2— (2.00,2.00),
OA ;= (3.00, 3.00),
OB;= (1.00,0.00),
OB,= (2.00,0.00),
OB;= (3.00,0.00)
AB;= (0.00,1.00),
A,B,= (0.00,2.00),
A3B3;= (0.00, 3.00).
We have

We get in Mathematics with Observers



|OA;|= V2 =142,
|OA,|= V8 =2.84,
|OA;|= V18 = NA,
|OB,|= V1 = 1.00,
|OB,|= V4 = 2.00,
|OB3|= V9 = 3.00,
|A;B;|= V1 = 1.00,
|AsBs|= V4 = 2.00,
|A3B;3|= v/9 = 3.00.
Note that

4.24 x94.24 =17.96; 4.25 x44.25 = 18.04,
and so \/ 18 does not exist, that is, NA.

In classical geometry, triangles OA; By, OA3 By, O A3 Bj are similar, and we have the following

equalities:
|OA;|  [OA;|  [|OA,]
|OB;| |OB,| |OBy|’
|OA;|  [OB;|  |A3B;]
|OA,|  |OB,|  [A;B,]’
|OA;|  |OB3|  |A3Bg|
|OA;| |OB;| |A;By]’

and

|OA2| |OB2| |A2By]
OA,;| |OBy| |A,By
Let us first consider two triangles OA; B and OAs B, and check these equalities. We get in

Mathematics with Observers



OAs| 284
|OB;| 2.00 ’
oAl 142
0B, 1 !
04, 284
OA, 142 °
OB, 2 _ 5
0B, 1
[A2Bs| _ 2 _,
|A1By| 1 ’

that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers
geometry. Note that if we take the inverse classical geometry equalities

|OB;| _ |OBy|
[OA,|  [OA,]

and

|OA,| _ [o): _ |AB,|
|OA,| |OB,| |A2Bs|’

we get in Mathematics with Observers

|OBs|  2.00 0.79
|0A,| 284 7
|OB;| 1.00

= = 0.72,
|OA,|  1.42
OA;| 1.42 0.51
0A,| 284 7
|OB, | 1

= = =050
|OB,| 2 ’
ABi_ 15
|A;By| 2 T

that is, in this case the classical geometry equalities are not satisfied in Mathematics with

Observers geometry.

Let us continue to consider the same two triangles OA; B; and OA5Bs, and instead of the

previous equalities, consider the following:

(OAQ, OAQ) X9 (OBl, OBl):
(OA2, OAQ) X2 (A1B17A1B1):

Let us check these equalities:

(OAl, OAl) X9 (OBQ, OBQ),
(OAl, OAl) X9 (AQBQ, AQBQ).



(OA,, 0A,) x5 (OB1,0B;)=8 x31 =38,
(OAl, OAl) X9 (OBz, OBQ): 2 X9 4= 8,
(OA3,0A,) X2 (A1B;,A1B1)=8x5,1=38,
(OA1,0A ) X3 (AsBy, AyBy)=2 x4 =38,
that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers

geometry.

Let us consider now the triangles OA;B; and O A3Bj. Because the length of O A 3 does not

exist,

|OA3| = V18 = N4,

we can consider the following equalities:

(OA3, OA3) X9 (OBl, OBl): (OAl, OAl) X9 (OBg, OB3),
(OA3, OA3) X9 (A1B1,A1B1): (OAl, OAl) X9 (A3B3,A333).
Let us check them:

(OA;,0A;3) x5 (OB1,0B;)=18 x5 1 =18,
(OAl, OAl) X9 (OB3, OB3): 2 X9 9= 18,
(OA;,0A3) X3 (A1B1,A1B;)=18 x5 1 =18,

(OAl, OAl) X9 (A3B3,A3B3): 2 X9 9= 18,
that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers

geometry.

Finally, let us consider the triangles O A3 By and O A3 B3. We consider the following equalities:

(OA3, OA3) X9 (OBQ, OBz): (OAz, OA2) X9 (0B3, OBg),
(OA3, OA3) X9 (A2B2, A2B)= (OAQ, OA2) X9 (A3B3,A3B3).
Let us check them:

(OA;,0A3) x5 (OB,,0By)= 18 x4 = 72,
(OA;3,0A;) x5 (0OB3,0B3)=8 x5 9 =72,
(OA3, OA3) X9 (A2B2, A2B2): 18 X9 4= 72,

(OA;3,0A)) X2 (A3B;3,A3B3)=8 x5 9 =172,
that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers

geometry.

2) Let us take again two straight lines in Eo W),

a:x—y=20
and



b:y=0,
and the points
O,A,As,A3€a; O,B,By,B3€b:
0(0,0), A1(1.83,1.83), A2(2.79,2.79), A3(3.14, 3.14), B1(1.83,0.00), B2(2.79,0.00),
B3(3.14,0.00).
Let us also consider three straight lines in EyWa,

c:z = 1.83,

d:x=2.79,
and

e:x =3.14.

These three vertical lines are parallel in the Euclidean sense, and we have

A,B1 €c¢c; Ay,Byed; Az Bsce.
Now let us consider the triangles OA; B, OA5B,, and OA3Bs. We consider the corresponding
vectors

— (1.83,1.83),
OA2 (2.79,2.79),
OA;= (3.14,3.14),
OB;= (1.83,0.00),
OB,= (2.79,0.00),
OB;= (3.14,0.00),
A;B;= (0.00,1.83),
A,B,= (0.00,2.79),
A;3B;3= (0.00,3.14),

and we have

(OA;,OA,)= 6.60,
(OA;, OA,)= 15.30,
(OA;, OA;)=19.70,
(OB, 0B;)= 3.30,
(OB,, OB,)= 7.65,
(OB;, OB;)= 9.85,
(A1B1, A1B1)= 3.30,
(A,Bs, AyB,)= 7.65,
(A3;B;, A3B3)= 9.85.

We get



|OA,|=v6.60 = NA,

|OA;|=v15.30 = N A,
|0A3|= V19.70 = N A,
|OB;|= v/3.30 = 1.83,

|OB,|= v/7.65 = 2.79,

|OB;|= v/9.85 = 3.14,
|A,B;|=/3.30 = 1.83,
|AsBs|= V7.65 = 2.79,
|A3B;|= v/9.85 = 3.14.

Note that

2.58 X2 2.58= 6.57; 2.59 x5 2.59 = 6.61,

3.91 x5 3.91=15.27; 3.92 x4 3.92 = 15.33,

4.44 x4 4.44=19.68; 4.45 x5 4.45 = 19.76.
S0 v/6.60, v/15.30, and 1/19.70 do not exist, that is, NA.

In classical geometry the triangles OA1 By, OAs By, OA3Bj are similar. Let us first consider
the triangles OA1B; and OA3Bj. Because the lengths of OA {1, OA, and OA 3 do not exist,

we can consider the following equalities:

(OA3, OA3) X9 (OBl, OBl): (OAl, OAl) X9 (OB3, OB3),
(OA3, OA3) X9 (A1B17A1B1): (OAl, OAl) X9 (A3B3,A3B3).
Let us check them:

= 19.70 x5 3.30 = 65.01,
= 6.60 x2 9.85 = 64.98,

(OA3,0A3) x2 (OB1,0B;
(OA1, OA1) X9 (OBg, 0B3
(OA3,0A3) x2 (A1B1,A1B;)=19.70 x3 3.30 = 65.01,
(OA1,0A,) x5 (A3B3,A3B3)=6.60 x5 9.85 = 64.98,
that is, in this case the classical geometry equalities are not satisfied in Mathematics with

S N N

Observers geometry.

Let us now consider the triangles OA; B; and OA5Bs. We consider the following equalities:

(OAQ, OAQ) X9 (OBl, OBl): (OAl, OAl) X9 (OBQ, OB2),
(OA2, OAQ) X9 (AlBl,AlBl): (OAl, OAl) X9 (A2B2,A2B2).
Let us check them:



(OA,, 0OA,) x5 (OB, 0B;)=15.30 x5 3.30 = 50.49,
(OAl, OAl) X9 (OBz, OBz): 6.60 X9 7.65 = 50.46,
(OA;3,0A) x5 (A1B;,A1B;)=15.30 x5 3.30 = 50.49,
(OA1,0A) x5 (A3B;y, AyBy)=6.60 x5 7.65 = 50.46,
that is, in this case the classical geometry equalities are not satisfied in Mathematics with

Observers geometry.

Let us finally consider the triangles O A, By and O A3 B3. We consider the following equalities:

(OA3, OA3) X9 (OB2, OBQ): (OAz, OAQ) X9 (OB3, OB3),
(OA3, OA3) X9 (A2B2,A2B2): (OAQ, OAQ) X9 (A3B3,A3B3).
Let us check them:

(OAs, OA3) x5 (OB,, OB,
(OAs, 0A,) x5 (OB3, OB;
(OA3, OA3) X9 (AzBQ, A2B2
(OA;,0A;) x5 (A3B3,A3B3

= 19.70 x, 7.65 = NA,
= 15.30 x5 9.85 = NA,
= 19.70 x5 7.65 = NA,
= 15.30 x5 9.85 = NA.

~— —r — —

Note that
19.70 x5 7.65¢ W,
15.30 x5 9.85¢ W.
So
(OAg, 0A3) X9 (OBQ, OBQ): NA,
(OAQ, OAQ) X9 (OBg, OBg): NA,
(OA3, OA3) X9 (AQBQ,AQBQ): NA,

(OA;,0A;) x5 (A3B3,A3B3)= NA,
that is, in this case the classical geometry equalities are not satisfied in Mathematics with
Observers geometry.

So we have proved the following:

Theorem 9.11.

In Mathematics with Observers geometry in the plane EsW.,,, there are two distinct similar in
Euclidean geometry triangles ABC and A’ B'C" such that they are similar in Mathematics with
Observers geometry.

Theorem 9.12.

In Mathematics with Observers geometry in the plane EsW.,,, there are two distinct similar in
Euclidean geometry triangles ABC' and A' B'C' such that they are not similar in Mathematics with
Observers geometry.



9.9 Pascal’s theorem
In classical geometry the following Pascal theorem takes place:

Given two sets of points A, B, Cand A’, B, C' situated upon two intersecting straight lines
such that none falls at the intersection of these lines. If C' B’ is parallel to BC' and C' A’ is
parallel to AC", then BA' is parallel to AB'.

Of course, “parallel” here is understood in the Euclidean sense.
Question: Is this theorem correct Mathematics with Observers geometry?
1) Let us take two straight lines in F/oWs,

a:y=20
and

a:z—9y=0,
and points A, B,C € aand A',B',C" € a':

A(8.00,0.00), B(4.00,0.00), C(2.00,0.00), A’(1.00,1.00), B'(2.00, 2.00), C'(4.00, 4.00).
Let us also consider four straight lines b, ¢, d, e € E;yW,:

b:a:+2y—22:0,
c:z = 2.00,
d:z =4.00,
e:x+2y—28=0.

We have

A, Cecb; B,Ccc; B C cd;, AC ce.
Line A'C is parallel to line AC’, and line B'C! is parallel to line BC' in the Euclidean sense.

Let us consider straight line f containing points A’, B and straight line g containing points A, B’

if they exist:

frfixox+2 faxay+2fs =0,
g:91 X2T+292 X2y+293=0.
We have

{fl X914+ fa x2142 f3 =0,

fi X242 fa X204+ f3 =0,
that is,



{f1 +2 fo = f1 X2 4,
fi1x24+4+95 f3=0,

that is,
{f2 = f1 X2 3,
_fl X9 4 = f3.
One possible solution of this system is
fl =1,
f2 =3,
f3=—4.

So one of possible straight lines f containing points A’, Bis

f2$+23><2y—24:0.
Now we go to line g. We have

{91 X22+2¢g2 X22+293 =0,
g1 X28 +292 X90+2g3 =0,
that is,

{91 X9 24902 X92=g1 X28,
g1 X2 8 +293 =0,
that is,

{92 X9 2 = g1 X326,

—g1 X2 8 = gs.
One possible solution of this system is

g1 = 1’
g2 = 3,
g3 = —8.

So one of possible straight lines g containing points A, B’ is

g:x+23 Xoy—28=0.
We see that lines f and g are parallel in the Euclidean sense. This means that in this case the

answer to the question is positive.

2) Let us take the same two straight lines in FoW5,

a:y=20
and



a:x—y=0,
and the points A, B,C € aand A", B',C' € d':

A(9.72,0.00), B(4.86,0.00), C(2.14,0.00), A’(1.07,1.07), B'(2.14,2.14), C'(4.86, 4.86).
Let us also consider four straight lines b, ¢, d, e € E;yWs:

b:x+2y—22.14 =0,
c:xz =214,
d:x = 4.86,

e

:$+2y—29.72 = 0.
We have

A,Cecb; B,Ccc B,C' cd; AC ce.
Line A’C is parallel to line AC’, and line B’C is parallel to line BC' in the Euclidean sense.

Let us consider straight line f containing points A’, B and straight line g containing points A, B’

if they exist:
frfixoz+a fa xoy+a f3 =0,
g:91 X2T+292 Xoy+293=0
We have
{fl X9 107 —|—2 fz X9 107 +2 f3 = O,
f1 x24.86 42 fo x20+2 f3 =0,
that is,
{fl X9 1.07 +9 fz X9 1.07 = fl X9 486,
fl X9 4.86 +9 f3 == 0,
that is,

{fz X9 1.07 = fl X9 4.86 —9 fl X9 107,
_fl X9 4.86 = f3.
One possible solution of this system is

fl = 1)
fo = 3.58,
s — —4.86.

So one of possible straight lines f containing points A’, B is

f S s D) 3.58 X9 Y —2 4.86 = 0.
Now we go to line g. We have



{91 X9 2.14 49 gg X92.14 +5 93 =0,
g1 X29.72+2 g2 X2 0+293 =0,
that is,

{91 X9 2.14 +2 g2 X2 2.14 = g1 Xo 972,

g1 X29.72 4293 =0,
that is,

{92 X9 2.14 = g1 Xao 9.72 —2 01 X9 214,
—g1 X2 9.72 = gs.
One possible solution of this system is

g1 = 1.01,
g = 3.50,
gs — —9.81.

So one of possible straight lines g containing points A, B’ is

g:1.01 X9z +23.59 X9y —29.81 =0.
Lines f and g are not parallel in the Euclid sense because straight line ¢’ containing point A and

parallel to line f has the equation

g 1T +93.58x9y—29.72=0,
and lines g and ¢’ are different ( B’ € g,but B’ ¢ ¢').

This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 9.13.

In Mathematics with Observers geometry in the plane E5W,, there are two sets of points A, B, C and
A’, B', C' situated upon two intersecting straight lines so that none falls at the intersection of these
lines, CB' is parallel in the Euclidean sense to BC', C' A’ is parallel in the Euclidean sense to AC",
and BA' is parallel in the Euclidean sense to AB'.

Theorem 9.14.

In Mathematics with Observers geometry in the plane EsW,,, there are two sets of points A, B, C and
A’, B', C' situated upon two intersecting straight lines so that none falls at the intersection of these
lines, CB' is parallel in the Euclidean sense to BC', C A’ is parallel in the Euclidean sense to AC",
but BA' is not parallel in the Euclidean sense to AB'.

9.10 Desargues’s theorem

In classical geometry the following Desargues theorem takes place:



If two triangles are situated in a plane so that their homologous sides are respectively parallel,

then the lines joining the homologous vertices pass through a unique point or are parallel.
Of course, “parallel” here is understood in the Euclidean sense.
Question: Is this theorem correct in Mathematics with Observers geometry?
1) Let us take six points A, B,C, A’, B',C" € E;W5:

A(0,0), B(1,0),C(0,2),A'(2,1),B'(4,1),C"(2,5).
Let us consider six straight lines a, b, c,d, e, f € E;Ws:

a:y=0,
b:x=0,
C:2Xox+2y—22=0,
d:y=1,
e:r =2,
fi2X9zx4+9y—29=0.

We have

A,Bca; ACcb; B,Ccc A,B' cd; A,C'ce; B,C'cf
and

ald; blle cff
Let us consider straight lines

gD [AA]; hD[B,B]; i>[C,C]
if they exist:

g:91 X2Z+292 X2y +293 =0,

h:hi Xox+2hs X2y+2h3 =0,

ii’il ><2:c+2i2 ><2y+2i3=0-
For line g, we get

{gl X 0.00 +2 g2 x20.00 +2 g3 =0,
g1 X22.00 +5 gs X5 1.00 +5 g3 = 0,
that is,

{93 =0,
g1 Xog 2.00 +- go = 0.
One possible solution of this system is



g1 = —1.00,
g2 = 2,
93 =0,

and thus line g has the equation

g:—x+22x2y=0.
For line h, we get

hi1 x21.00 +2 ha x20.00 +2 h3 =0,
hl X9 4.00 +2 h2 X9 1.00 +32 h3 = O,
that is,

hs = —hq,
—h1 X9 3.00 = hg.
One possible solution of this system is

hy = —1.00,
hy = 3,

and thus line h has the equation

h:—z+53x9y—51=0.
For line /, we get

11 X9 0.00 4529 X9 2.00 4923 =0,
21 X9 2.00 +9 72 X9 5.00 49 73 = 0,
that is,

i3 = —ig X9 2.00,
—i1 X9 2.00 = i2 X9 3.00.
One possible solution of this system is

i1 = —3.00,
is = 2.00,
i3 = —4.00,

and thus line / has the equation

1:—3.00 X9 x +492.00 X9y —24.00=0.
Let us now find the intersection of lines g, h, i:



—T 492 X9y=0,
—x +23 X2y +21=0,
—3.00 x9 x +22.00 Xo Y —2 4.00 = 0,

that is,

T =2 Xy Yy,

—.’L'—|—23X2y+21:0,

—3.00 X9 x +9 2.00 X9 Y —2 4.00 = 0,
that is,

z = —2.00,
y = —1.00,
that is, the lines joining the homologous vertices of the triangles ABC and A’ B'C’ pass

through a unique point. This means that in this case the answer to the question is positive.
2) Let us take six points A, B,C, A’, B',C' € E,W:

A(1.12,1.12), B(2.12,1.12),C(1.12,3.12), A’(2,1), B'(4,1),C"(2, 5).
Let us consider six straight lines a, b, c,d, e, f € E;Ws:

a:y=112,

b:x=1.12,
c:2Xox+2Y—29536=0,
d:y=1,

e:x =2,
fi2%xox+9y—29=0.

We have

A,Bca; A Ccb; B,Ccc A,B' cd; A,C'ce; B,C'cf
and

ald; blle cff
Let us consider straight lines

gD [AA]; hD[B,B]; i>[C,C]
if they exist:

g:91 X2Z+292 X2y +293 =0,

h:hi Xox+2hs X2y+2h3 =0,

i:91 Xo & +oiy Xoy+oiz=0.
For line g, we get



{91 X9 1.12 —|—2 ga X9 1.12 —|—2 gs = O,

g1 X22.00 42 g2 x21.00+2g3 =0,
that is,

{—93 = g1 X9 2.00 +9 ga Xo 100,
g1 X2 1.12 —201 X2 2.00 = g2 X2 1.00 —202 X2 1.12.
One possible solution of this system is

g1 = 100,
g2 = 7.40,
gs — —940,

and line g has the equation

g:T+2 7.40 X9 Y —2 9.40 = 0.
For line h, we get

hi X22.12 49 hy X91.12 49 hg = 0,
hl X9 4.00 +2 h2 X9 1.00 +32 h3 = O,
that is,

—hg = hl X9 4.00 +9 h2 X9 100,
hl X9 2.12 —9 hl X9 4.00 = h2 X9 1.00 —9 hz X9 1.12.
A possible solution of this system is

hy = 1.00,
hy = 15.80,
hs = —19.80,

and line h has the equation

h:x+915.80 X9 Y —9 19.80 = 0.
For line /, we get

il X9 1.12 +9 ’ig X9 3.12 “+9 i3 = O,
21 X9 2.00 +9 72 X9 5.00 49 73 = 0,
that is,

—143 = 41 X9 2.00 +9 72 X9 5.00,
il X9 1.12 —9 ’1:1 X9 2.00 = 7:2 X9 5.00 —9 ’ig X9 3.12.
One possible solution of this system is



11 = —2.13,

12 = 1.00,

13 = —0.74,
and line j has the equation

1:—213 X2z +2y—20.74 = 0.
Let us now find now the intersection of lines g, h, i:

T +9 7.40 X9 Y —2 9.40 = 0,
T +9 15.80 X9 Y —2 19.80 = 0,
—2.13 Xo & +oUY —2 0.74 = 0,

that is,

xr = —T7.40 Xo Y +2 940,

—7.40 X9 Y +2 9.40 +9 15.80 X9 Y —9 19.80 = 0,

—2.13 X2 (—7.40 X2y +29.40) +2y —2 0.74 = 0,
that is,

r=—7.40 Xo Y +2 940,

—7.40 X9 Y +2 15.80 %o Y —2 10.40 = O,

—2.13 X3 (—7.40 X5y +29.40) +2y —2 0.74 = 0,
that is,

x=0.24,
y=1.24,
that is, the lines joining the homologous vertices of the triangles ABC and A’ B'C’ pass

through a unique point. This means that in this case the answer to the question is positive.
3) Let us take six points A, B,C, A’, B',C' € E;W5:

A(0.23,0.98), B(1.11,2.65), C(1.39,2.65), A’(2.74,3.14), B'(8.01,13.07), C'(8.95, 13.07).
Let us consider six straight lines a, b, c,d, e, f € EoWs:

a:1.47 ><2:c—2y+20.67:(),

b:1.87T X9z —9y+20.59 =0,
c:y—22.65=0,
d:147T X9x —9y —20.82 =0,
e:1.87TXq9x—9y—21.90 =0,
f:y—213.07=0.

We have



A,Cca; ABecb; B,Ccc A C'cd; A ,Bce B,0'cf

and

ald; ble cff

in the Euclidean sense.

Let us consider straight lines

gD [AA']; RD[BB]; i>][C,C
if they exist:

g:91 X2T+292 X2y +293 =0,

h:hy Xox+39hy Xoy+2hz =0,

1:1%1 Xo& +21s Xoy+oi3=0.
For line g, we get

{91 X9 0.23 +2 g2 Xo 0.98 +293 = 0,
g1 X2 2.74 +- g2 X2 3.14 4+ gs = 0,
that is,

{—93 = g1 X20.23 +5 g3 X2 0.98,
g1 X2 0.23 —201 X2 2.74 = ga X2 3.14 —2092 X2 0.98.
One possible solution of this system is

g1 = —0.88,
g2 = 1.00,
gs = —0.82,

and line g has the equation

g: —0.88 X9 & +oY —2 0.82 = 0.
For line h, we get

h1 X2 1.11 4+9 hg X9 2.65 +9 hy = 0,
h1 X9 8.01 —+9 h2 X9 13.07 +9 h3 = O,
that is,

—h3 = h1 X9 1.11 “+9 h2 X9 265,
hl X9 1.11 —9 h1 X9 8.01 = h2 X9 13.07 —2 hg X9 2.65.
One possible solution of this system is



hi = —1.51,

hy =1,

hs = —0.98,
and line h has the equation

h:—151x22x+2y—20.98=0.
For line /, we get

11 X2 1.39 4212 X9 2.65 4213 =0,
’il X9 8.95 +2 ig X9 13.07 +32 i3 = 0,
that is,

—i3 =11 X2 1.39 42 42 X2 2.65,
il X9 1.39 —9 ’il X9 8.95 = ’ig X9 13.07 —9 7:2 X9 2.65.
One possible solution of this system is

11 = —1.31,
19 = 0.95,
13 = —0.65,

and line j has the equation

1:—1.31 X9 & +9 0.95 Xo Y —2 0.65 = 0.
Let us now find the intersection of lines g, h, i

—0.88 X9 x 44 Y —2 0.82 = 0,
—1.51 X9 x +9 Y —2 0.98 = 0,
—1.31 X9 +20.95 X5y —20.65 =0,

that is,
—0.88 X9 XL —2 0.82 = -,
0.88 X9 & +9 0.82 =1.51 X9 & +9 098,
—1.31 X9 & 49 0.95 X9 Y —2 0.65 = O,
that is
z = —0.22,
y = 0.66,

—1.31 X2 (—0.22) +2 0.95 x2 0.66 —3 0.65 = 0.17 #£ 0,
that is, the lines joining the homologous vertexes of the triangles ABC and A’ B'C’ do not pass

through a unique point. This means that in this case the answer to the question is negative.

So we have proved the following:



Theorem 9.15.
In Mathematics with Observers geometry in the plane EsW,,, there are two triangles situated in a

plane so that their homologous sides are parallel in the Euclidean sense, and the lines joining the
homologous vertices pass through a unique point or are parallel in the Euclidean sense.

Theorem 9.16.
In Mathematics with Observers geometry in the plane EsW.,,, there are two triangles situated in o

plane so that their homologous sides are parallel in the Euclidean sense, and the lines joining the
homologous vertices neither pass through a unique point nor are parallel in the Euclidean sense.



10 Observability and triangles. Special cases

In this chapter, we consider the straight lines with equations

Yy=mXxX,x+,b
or

mx,x+,b=0,
where z,y,m,b,m x, x +, b € W,.

10.1 Angle bisector of triangle theorem
In classical geometry, we have the following statement:

In the angle C of a triangle A ABC, the bisector C'D divides the side AB proportionally to the

corresponding sides:

AC BC

AD ~ BD’
Let us now consider the situation in Mathematics with Observers geometry. First, let us give the
definition of the angle bisector line. Let us take a point £ on the half-ray AB, a point F on the
half-ray AC, and a point G on the half-ray AD and the corresponding three vectors AE, AF,
AG. Let

(AE, AE)> 0,
(AF,AF)> 0,
(AG,AG)>0
(AE, AE)= (AF, AF).
We say that the half-ray AD is an angle A bisector line if

)

(AE,AG) = (AG, AF).
Note that if we take any A AB’C’ with points

B'€¢ AB, C'e AC,
then AD is still an angle A bisector.

Let n = 2. We would like to check if the following equality is correct:

(AB,AB) x,, (DC,DC) = (AC, AC) x, (BD,BD).
For this, let us consider several cases.



1. Let us consider A ABC with sides

AB:y=2Xsx +52,
AC:y=—-2x9x 422,
BC:y=0.
Let us determine the coordinates of the vertices of AABC'. The coordinates of the point A are

the solution of the system

{y: 2 Xox+22,
Y= —2 X +2 2)
and we get A(0, 2).

The coordinates of the point B are the solution of the system

Yy=2XoT +22,
y=0,
and we get B(—1,0).

The coordinates of the point C are the solution of the system

Y= —2 X9 +9 2,
y=0,
and we get C(1,0).

The coordinates of the point D (base of the angle A bisector A D) satisfy
x=0,
y =0,

Let us check that the line AD is an angle A bisector. Let us consider in this case

and we get D(0,0).

E= B,
F=C,
D= G,
AE= (—-1,-2),
(AE,AE)= —1x5 143 -2x3-2=5>0,
AF=(1,-2),
(AF,AF)=1 X514+ —-2x3-2=5>0,
AG=(0,-2),

(AG,AG)=0x50+; —2 x5 —2=4>0,



that is,

(AE, AE) = (AF, AF).
So we have proved that in this case, the line AD is an angle A bisector. To get the answer to the

question above, let us calculate

BD= (1,0),
(BD,BD)=1x31+20x20=1>0,
DC= (-1,0),
(DC,DC): -1 X9 —1 +9 0 X9 0=1> O,
and, finally,
(AB,AB) x, (DC,DC)=5 x51 =15,
(AC,AC) x, (BD,BD)=5 x51 =15,
that is,

(AB,AB) x,, (DC,DC) = (AC,AC) x, (BD,BD).
This means that the answer to this question is positive.

2. Let us consider A ABC" with the same points A and B and C' € AC where Cis as in the

previous case. So we have

A(0,2),B(—1,0),C(1,0),
and AD is an angle A bisector. Let

BC':y=1.01 x3 z +2 1.01.
The coordinates of the point C’ are the solution of the system

Y= —2 X9 & +2 27
y=1.01 X9z +21.01,
and we get C'(0.33,1.34).

Let D’ be the intersection of the angle A bisector AD and line BC'. The coordinates of the point
D’ are the solution of the system
{a: =0,
y=1.01 xXgz +21.01,
and we get D'(0,1.01).

We get



(AB,AB)=1x51+52x,2=5>0,
(AC',AC')=0.33 x5 0.33 +5 0.66 x5 0.66 = 0.45 > 0,
(BD,BD’)=1 x5 1+51.01 x3 1.01 = 2.02 > 0,
(D'C’,D'C')=0.33 X, 0.33 +3 0.33 x5 0.33 = 0.18 > 0,
and, finally,

(AB,AB) X9 (D’C',D'C'): 0.9,
(AC',AC’) X2 (BD',BD’): 0.9
So
(AB,AB) x, (D'C',D'C’) = (AC',AC') x, (BD',BD/).

This means that the answer to the question is positive.

3. Let us consider A ABC with sides

AB:y=4X2x +28,

AC:y=—4 XxXqx 428,

BC:y=0.
Let us determine the coordinates of the vertices of A ABC'. The coordinates of the point A are
the solution of the system

Y= 4 X9 & 2 87
Yy= —4 X9 T +2 8)
and we get A(0, 8).

The coordinates of the point B are the solution of the system

{y =4 X9 T +2 8)
y=0,
and we get B(—2,0).

The coordinates of the point C are the solution of the system

y=—-4x2z+28,
y=0,
and we get C(2,0).

The coordinates of the point D (base of the angle A bisector AD) are

xz =0,
y=0,



and we get D(0,0).

Let us check that line AD is an angle A bisector. Let us consider in this case

E= B,
F=C,
D= G,
AE= (-2,-8),
(AE,AE)= —2 x5 —2 45 —8 x» —8 = 68 > 0,
AF= (2,-8),
(AF,AF)=2 x,2+, —8 x5 —8 = 68 > 0,
AG= (0,-8),

(AG,AG): 0 X9 0 +9 —8 X9 —8 =64 > 0,
that is,

(AE, AE) = (AF,AF).
So we have proved that in this case line AD is an angle A bisector. To get the answer to the

question above, let us calculate

BD= (2,0),
(BD,BD)=2x52+50x50=4>0,
DC= (-2,0),
(DC,DC)= —2 x3 =2 450 x20=4 >0,
and, finally,
(AB,AB) x, (DC,DC)= 68 x24 & W,
(AC,AC) x,, (BD,BD)=68 x5 4 & Ws.
Let

BC':y=2.02 x9x +4 4.04.
The coordinates of the point C" are the solution of the system

Y= —4 X9 x +9 8,
y = 2.02 X5 2 4 4.04,
and we get C'(0.66, 5.36).

Let D’ be the intersection of the angle A bisector AD and line BC'. The coordinates of the point

D' are the solution of the system

z=0,
Y= 2.02 X9 & 49 404,



and we get D'(0,4.04).

We get
(AB,AB)= 68 > 0,
(AC',AC')=7.28 > 0,
(BD',BD’)= 20.32 > 0,
(D'C’,D'C")=2.09 > 0,
and, finally,

(AB,AB) x; (D'C',D'C’) = 68 x22.09 ¢ W».
This means that the answer to the question in this case is negative because the element of this

equality that we checked does not exist in Ws.

4. Let us consider A ABC with sides

AB:y=3 Xsx 426,

AC:y= -3 X9z 426,

BC:y=0.
Let us determine the coordinates of the vertices of AABC'. The coordinates of the point A are
the solution of the system

y=3xa2x+26,
Y= -3 X9 & +2 6a
and we get A(0,6).

The coordinates of the point B are the solution of the system

y=3 X2 +26,
y=0,
and we get B(—2,0).

The coordinates of the point C are the solution of the system

y=—3 X2 +26,
y=0,
and we get C(2,0).

The coordinates of the point D (base of the angle A bisector AD) are

xz =0,
y=0,



and we get D(0,0).

Let us check that line AD is an angle A bisector. Let u consider in this case

E= B,
F=C,
D=G,
AE= (-2,-6),
(AE,AE)= —2 x5 —2 43 —6 x5 —6 = 40 > 0,
AF= (2,-6),
(AF,AF)=2 x32+5 —6 x5 —6 =40 > 0,
AG= (0,-6),

(AG,AG): 0XxX90+9—6 x93 —6=236>0,
that is,

(AE, AE) = (AF,AF).
So we have proved that in this case, line AD is an angle A bisector. To get the answer to the

question above, let us calculate

BD= (2,0),
(BD,BD): 2X92490%x90=4>0,
DC= (—2,0),
(DC,DC): —2X9—24950x%x950=4>0,
and, finally,
(AB,AB) Xn (DC,DC): 40 X9 4 & Wh,
(AC,AC) Xn, (BD,BD): 40 x9 4 & Wy,
that is,
(AB,AB) Xn (DC,DC) = (AC,AC) X (BD,BD).
Let

BC':y=1.51 x9 z +5 3.02.
The coordinates of the point C’ are the solution of the system

y=—3 X2z +26,
y=1.51 xg 2 +5 3.02,
and we get C'(0.67,3.99).

Let D’ be the intersection of the angle A bisector AD and line BC'. The coordinates of the point

D’ are the solution of the system



z=0,
y = 1.51 X2 x +2 3.02,
and we get D'(0, 3.02).

We get
(AB,AB)= 40 > 0,
(AC',AC')=4.4>0,
(BD’,BD')=13.12 > 0,
(D'C’,D'C")=1.17 > 0,
and, finally,
(AB,AB) x, (D'C’,D'C")= 40 x, 1.17 = 46.8,
(AC',AC’) x5 (BD',BD’)= 4.4 x» 13.12 = 57.72.
So

46.8 # 57.72.
This means that the answer to this question in this case is negative.

So we have proved the following:

Theorem 10.1.

In Mathematics with Observers geometry on the plane, there are triangles where the classical angle
bisector theorem adopted for Observers’ case is correct, and there are triangles where this statement is
wrong.

10.2 Middle of segment, median, gravitation center of triangle
Before developing the main theorem of this topic, we need to consider several situations.

1.Let n = 2, and let us consider A(OAB) with

0(0,0); A(1,6); B(1.5,4.5).
Let L, M, and N be the midpoints of OA, AB, and OB, respectively:

L(0.5,3); M(1.25,5.25); N(0.75,2.25).
Let us find the equation of median BL:

y=k><2w+2b,
45=1.5 X2k+2 b,
3=0.5 X2k+2b.



So
k= 1.5,
b = 2.25,

Yy = 1.5 Xo & +9 2.25.
Let us find the equation of median OM:

and thus the equation of median BL is

y==kxax+2b,
0:0X2k+2b,
{5.25: 1.25 X9 k +5 b.
So

k=4.21,
b=0,
and, finally, the equation of median OM is

y=4.21 x4y .
Let us find the equation of the median AN

y=k Xy +ab,
6=1x5k+50,
{2.25:0.75 Xo k+290b.
So

{k =15,
b= -9,
and, finally, the equation of median AN is

Yy = 15 X9 X —2 9.
The centroid of A(OAB) is the point of intersection of all three medians BL, OM, AN, that s,

a solution of the following system of equations:

y=1.5 Xgx +92.25,

Y= 4.21 x4 x,

y=15 X9z —9 9.
First, let us find the solution of the system

Yy = 1.5 X9 @ +9 225,
Yy = 15 Xo T —9 9,
0=15 X9 XL —9 1.5 X9 XL —2 11.25,



or

11.25 =15 X9 X —9 1.5 Xo .
When x = 0.83, we get

15 x5 0.83 —5 1.5 x5 0.83 = 11.22 # 11.25.
When z = 0.84, we get

15 x5 0.84 —5 1.5 x5 0.84 = 11.36 # 11.25.
This means that this system has no solution, that is, the medians BL and AN do not intersect.

Let us find the solution of the system

y=1.5 Xgx +92.25,
{y =4.21 %oz,
2.25 =4.21 X9 x —9 1.5 Xy .
When x = 0.83, we get

4.25 X2 0.83 —2 1.5 x20.83 = 3.48 —2 1.23 = 2.25.
This means that this system has a solution: the medians BL and OM intersect at the point

D(0.83, 3.48).
Let us find the solution of the system

Y= 15 X9 & —2 9,
{y: 4.21 x5z,
15 X9z —94.21 X9z = 9.
When & = 0.83, we get

15 x5 0.83 —54.21 x5 0.83 = 8.97 < 9.
When x = 0.84, we get

15 x5 0.84 —5 4.21 x5 0.84 = 9.08 > 9.
This means that this system has no solution, that is, the medians AN and OM do not intersect.

This means that A(OAB) does not have a centroid, so a very important conclusion to classical
mechanics is that there are some homogeneous planes of the form of A(OAB) that have no

center of gravity.
2.Let n = 2, and consider A(OAB) with

0(0,0); A(0,4); B(2,0).



Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(0,2); C(1,2); L(1,0).
Let us find the equation of the median OC'":

y=kxyz+30,
0:0X2k+2b,
{2:1x2k+2b.
So

k=2,
b=0,
and, finally, the equation of median OC'is

Yy=2Xsx.
Let us find the equation of median AL:

y=kxzz+2b,
4=0x9k+50,
{0:1X2k+2b.
So

{k = 4,
b=4,
and, finally, the equation of median AL is

y=—4 xXyx +24.
Let us find the equation of median BK:

y:kX2$+2b,
2=0x2k+20,
0=2X2k§—|—2b.

So

k=-1,
b=2,
and, finally, the equation of median AN is

Yy=—T+92.
The centroid of A(OAB) is the point of intersection of all three medians OC, AL, BK, that is,
is the solution of the system of equations



y=2xyuz,

Y= —4 X9 x +9 4,

Yy=—x+22.
First, let us find the solution of the system

y=2xazx,
{y:—4><2m+24,
2Xg9gx=—-4X9x+94,
or

4:4X2$—|—22X2.’L‘.
When & = 0.66, we get

4 x90.66 492 x5 0.66 =3.96 < 4.
When & = 0.67, we get

4 x90.67 422 x90.67 =4.02 > 4.
This means that this system has no solution, that is, the medians OC' and AL do not intersect.

Let us find the solution of the system

y=2xsyuz,
{y: —x 422,
2=2X9x+ox.
When x = 0.66, we get

2 x20.66 +20.66 = 1.98 < 2.
When z = 0.67 we get

2 X9 0.67+20.67 = 2.01 > 2.
This means that this system has no solution, that is, the medians OC and BK do not intersect.

Let us find the solution of the system

{y:—4><2w+24,
y:_$+227

2=4 X9 —9 .
When & = 0.66, we get

4 X590.66 —5 0.66 = 1.98 < 2.
When x = 0.67, we get



4 x90.67 —2 0.67 = 2.01 > 2.
This means that this system has no solution, that is, the medians AL and BK do not intersect.
So we have showed that each pair of medians does not intersect. This means that A(OAB) does
not have a centroid, and again it is a very important conclusion to classical mechanics: we get

some homogeneous planes of the form A (OAB) having no center of gravity.
3.Let n = 3, and consider A(OAB) with

0(0,0); A(2,1.734); B(4,0).
Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(1,0.867); C(3,0.867); L(2,0).
Let us find the equation of median OC'"

y=kXx3z+3b,
0=0x3k+3b,
0.867 = 3 x3 k +3b.

So
k = 0.289,
b=0,
and, finally, the equation of median OC' is
y=0.289 x3 x.
The equation of median AL is
=2

Let us find the equation of median BK:

y=kx3zz+3b,
0=4x3k+3b,
{0.867: 1x3k+3b.
So

k = —0.289,
b= 1.156.
The centroid of A(OAB) is the point of intersection of all three medians OC, AL, BK, the

solution of the system of equations

y = 0.289 x5z,
T =2,

y = —0.289 x3x +3 1.156.



First, let us find the solution of the system

y = 0.289 x3 z,
T = 2.
So
{:1: =2,
y = 0.578.
Let us find the solution of the system
Yy = —0.289 X3 +3 1156,
T = 2.
So
T =2,
y = 0.578.
This means that the system of equations
y = 0.289 x3 z,
T =2,
y = —0.289 X3 +31.156
has the solution
T =2,
y = 0.578.

So we have showed that three medians of A(OAB) intersect, and thus A(OAB) has a

centroid. We have proved the following:

Theorem 10.2.
In Mathematics with Observers geometry on the planes, there are triangles having a centroid and
triangles having no centroid.

4. Let us continue to consider A(OAB) with vertices

0(0,0); A(2,1.734); B(4,0)
and the midpoints K, C, and L of OA, AB, and OB, respectively:

K(1,0.867); (C(3,0.867); L(2,0)
from the W3-observer point of view.

As we showed above, the A(OAB) has the centroid F'(2,0.528).

Classical geometry states the following theorem:



“Three medians of any triangle intersect in one point (called the centroid), and this point

divides each median in the ratio 1:2.”

So in our case, from the classical geometry point of view, we must have

|OF| = 2|FC|, |AF|=2|FL|, |BF|=2|FK|
Let us check this 1:2 property in our case. Because
necessarily exist in W3, we will check this as follows. First, we have to introduce the vectors

2,0.528),
1,0.339),

FK= (—1,0.339).
Now we calculate the scalar products of all vectors to themselves:

(OF,OF )= 2 x5 2 +30.528 x3 0.528 = 4 +3 0.27 = 4.27,
(FC,FC)=1 x51 435 0.339 x5 0.339 = 1 +3 0.108 = 1.108,
(AF,AF)=0 x50 +3 (—1.206) x3 (—1.206) = 0 +5 1.452 = 1.452,
(FL,FL)= 0 x50 +3 (—0.528) x3 (—0.528) = 0 +35 0.27 = 0.27,
(BF,BF)= (—2) x3 (—2) +5 0.528 x5 0.528 = 4 +3 0.27 = 4.27,
(FK,FK)= (1) x5 (—1) +3 0.339 x3 0.339 = 1 43 0.108 = 1.108,

and we see that

(OF,OF) # 4 x3 (FC,FC),
because 4.27 # 4 x3 1.108 = 4.432,

(AF, AF) # 4 x5 (FL, FL),
because 1.452 £ 4 x30.27 = 1.08, and

(BF,BF) # 4 x5 (FK, FK),
because 4.27 # 4 x31.108 = 4.432.

5. Let again n = 3. Let us consider the A(OAB) with

0(0,0); A(2,3.468); B(4,0).
Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(1,1.734); C(3,1.734); L(2,0).
Let us find the equation of the median OC'



y=kxszz+3b,
0:0X3]€+3b,
1.734:3X3k+3b,

and so
k = 0.578,
b=0.
Finally, the equation of median OC' is
y=0.578 x5,
and the equation of the median AL is
x = 2.

Let us find the equation of the median BK:

y=kxzz+3b,

0=4x3k+3b,

{1.734: 1 X3 k—+3b,
and so

k= —0.578,
b=2.312.
Finally, the equation of the median BK is

y= —0.578 x3x +32.312.
The centroid of A(OAB) is the point of the intersection of all three medians OC, AL, BK,
that is, the solution of the system of equations

y=0.578 x3 z,

T =2,

y=—0.578 x3x +32.312.
First, let us find the solution of the system

y=0.578 x3 x,
T = 2.
So

T =2,
y = 1.156.

Now let us find the solution of the system



{y = —0.578 X3 +3 2312,

T = 2.
So
{m =2,
y = 1.156.
This means that the system of equations
y=0.578 x3 z,
T =2,
y=—0.578 x3x +32.312
has the solution
T =2,
y = 1.156.

So we have showed that three medians of A(OAB) intersect, which means that A(OAB) has
the centroid point F'(2,1.156).

Let us go back to the classical geometry theorem:

“Three medians of any triangle intersect in one point (called the centroid), and this point

divides each median in the ratio 1:2.”

So in our case, from the classical geometry point of view, we must have

|OF| = 2|FC|, |AF|=2|FL|, |BF|=_2|FK]|.
Let us check this 1:2 property in our case. Because

necessarily exist in W3, we will check this as follows. First, we introduce the vectors

= (2,1.156),
FC= (1,0.578),
AF= (0,-2.312),
FL= (0, —1.156),
BF= (—2,1.156),

FK= (—1,0.578).
Now we calculate the scalar products of all vectors to themselves:



(OF,OF)= 2 x3 2 +3 1.156 x3 1.156 = 4 +5 1.332 = 5.332,
(FC,FC)=1 x314350.578 x5 0.578 = 1 +3 0.32 = 1.32,
(AF, AF)= 0 x3 0 +3 (—2.312) x5 (—2.312) = 0 +3 5.344 = 5.344,
)
)
)

(FL,FL)=0 x30+3 (—1.156) x3 (—1.156) = 0 +3 1.332 = 1.332,

(BF,BF)= (—2) x3(—2) +31.156 x31.156 = 4 43 1.332 = 5.332,

(FK,FK)= (—1) x3(—1) +30.578 x30.578 = 1 43 0.32 = 1.32,
and we see that

(OF, OF) # 4 x5 (FC,FC),
because 5.332 # 4 x31.32 = 5.28,

(AF,AF) # 4 x3 (FL,FL),
because 5.344 # 4 x31.332 = 5.328, and

(BF,BF) # 4 x5 (FK,FK),
because 5.332 # 4 x31.32 = 5.28.

6. Let now n = 6. Let us consider the A(OAB) with

0(0,0); A(2,3.464106); B(4,0).
Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(1,1.732053); C(3,1.732053); L(2,0).
Let us find the equation of the median OC'":

y=kxe¢x+¢b,

0:0X6k+6b,

1.732053 = 3 xg k +¢ b.
So

k =0.577351,
b=0.
Finally, the equation of the median OC'is

y = 0.577351 x¢ ,
and the equation of the median AL is

T =2.
Let us find the equation of the median BK:



y=kxgz+¢b,
0=4xgk+¢0,
{1.732053 =1xgk+gb.
So

k= —0.577351,
b = 2.309404,
and, finally, the equation of the median BK is

y = —0.577351 x¢ = +¢ 2.309404.
The centroid of A(OAB) is the point of intersection of all three medians OC, AL, BK, that is,

a solution of the system of equations

y = 0.577351 x¢ z,

T =2,

y = —0.577351 x4 x +¢4 2.309404.
First, let us find the solution of the system

y = 0.577351 x4 z,
r = 2.
So

T =2,
y = 1.154702.
Now let us find the solution of the system

{y = —0.577351 X g = +¢ 2.309404,
r = 2.
So

T =2,
y = 1.154702.
This means that the system of equations

y = 0.577351 x¢ x,

T =2,

y = —0.577351 x4 x +4 2.309404
has the solution

T =2,
y = 1.154702.



So we have showed that three medians of A(OAB) intersect, and this means that A(OAB)
has the centroid point F'(2,1.154702).

Let us go back to the classical geometry theorem:

“Three medians of any triangle intersect in one point (called the centroid), and this point

divides each median in the ratio 1:2.”

In our case, from classical geometry point of view, we must have

|OF| = 2|FC|, |AF|=2|FL|, |BF|=2|FK|.
Let us check this 1:2 property in our case. Because

necessarily exist in Wg, we will check this as follows. First, we introduce the vectors

OF= (2,1.154702),
FC= (1,0.577351),
AF= (0,—2.309404),
FL= (0,—1.154702),
BF= (—2,1.154702),
FK= (—1,0.577351).
Now we calculate the scalar products of all vectors to themselves:

(OF, OF )= 2 x 2 +¢ 1.154702 x 1.154702 = 4 +¢ 1.33333 = 5.33333,

(FC,FC)=1 x4 1 44 0.577351 x4 0.577351 = 1 44 0.333321 = 1.333321,

(AF,AF)=0 x4 0 +¢ (—2.309404) x ¢ (—2.309404) = 0 +4 5.333337 = 5.333337,

(FL,FL)= 0 x 0 +¢ (—1.154702) x¢ (—1.154702) = 0 + 1.33333 = 1.33333,

(BF,BF)= (—2) x (—2) +¢ 1.154702 x 1.154702 = 4 +4 1.33333 = 5.33333,
)=

(FK,FK ( ) ( ) 6 0.577351 x4 0.577351 = 1 44 0.333321 = 1.333321,
and we see that

(OF,OF) # 4 x4 (FC,FC),
because 5.33333 £ 4 x4 1.333321 = 5.333284,

(AF, AF) # 4 x4 (FL,FL),
because 5.333337 # 4 x4 1.33333 = 5.33332, and

(BF, BF) # 4 x¢ (FK,FK),
because 5.33333 # 4 x 1.333321 = 5.333284.

So we have proved the following:



Theorem 10.3.
In Mathematics with Observers geometry on the planes, there are triangles having a centroid that does
not divide each median in the ratio 1:2.

7. Let now n = 6. Let us consider the A(OAB) with

O(0,0); A(2,3.464102); B(4,0).
We have

|OA| = |AB| = |OB| = 4,
because

2 xg 2+ 3.464102 x ¢ 3.464102 = 4 44 12 = 16,
that is, A(OAB) is an equilateral triangle.

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(1,1.732051); C(3,1.732051); L(2,0)
Let us find the equation of the median OC'":

y=k Xgx +gb,
0=0xgk+s0,
{1.732051 =3 Xg k+¢b.
So we get

b=0,
but k does not exist, because

3 x60.577350 = 1.732050 < 1.732051
and

3 x60.577351 = 1.732053 > 1.732051.
So the median OC does not exist.

The equation of the median AL is

T =2.
Let us find the equation of the median BK:

y=kx¢x+¢b,
0 =4 xgk-+gb,
{1.732051 — 1 xgk+gb.
So



b= —4 x4k,
1.732051 =1 X6 k —6 4 X6 k,
but k does not exist, because

1 X (—0.577350) —64 Xg (—0.577350) = 1.732050 < 1.732051
and

1 % (—0.577351) —g 4 x¢ (—0.577351) = 1.732053 > 1.732051.
So the median BK does not exist. This means that the centroid of A(OAB) does not exist.

So we have proved the following:

Theorem 10.4.
In Mathematics with Observers geometry on the plane, there is an equilateral triangle having only one
median and having no centroid.

10.3 Vertices and sides of triangle

Let us consider a triangle with sides (12 = 2)

a:x =0,

b:y=0,

c:y=—zc+21.
This triangle has the vertices

A(1,0),

B(0,1),

C(0,0).
In this case the triangle has three sides and three vertices. So, in this situation, we can denote the
triangle by Aabc or AABC

Let us consider the triangle with vertices (again, n = 2)

A(6.01,2.01),
B(—4,4),
C(2,—6).

Let us prove that this triangle has no sides. We will use the formula

y=m X, &+, b.
The line

BC =a



has to contain the points B and C, that is, we have the system of equations

4=—-4 X9 M +9 b,
—6=2x%x9m+2b.
We have the new system

{b:4+24><2m,
—6=2Xam+24+24 xXam,
that is,

b=4 +9 4 x 2 mMm,
—10 =2 x9m +94 x9m.
The second equation of this system has no solution, because if

m = 1.66,
then
2 ><2m+24><2m:9.96,
and if
m = 1.6,
then
2X9m+94 x9m = 10.02.
So
a = BC
does not exist.
The line
AB=c¢

has to contain the points A and B, that is, we have the system of equations

2.01 =6.01 xoam +2 b,
4=—-4 X9 M 49 b.
We have the new system

b=2.01 —56.01 x5m,
4=—-4 X9 M 49 2.01 —9 6.01 X9 m,

that is,



b=2.01—56.01 xysm,
1.99= -4 X9 M —2 6.01 X9 M.
The second equation of this system has no solution, because if

m = —0.19,
then
—4 Xo9m —96.01 Xom = 19,
and if
m = —0.2,
then
—4 X9 M —9 6.01 X9 Mm = 2.
So
c=AB
does not exist.
The line
AC =b

has to contain the points A and C, that is, we have the system of equations

2.01 = 6.01 X9 m +9 b,
—6=2X9m-+9b.

We have the new system

{b::zo1—2601x2n%
—6=2X9am+22.01 —26.01 Xom,
that is,

b=2.01 —26.01 x2m,
—8.01 =2 X9 M —29 6.01 X9 m.
The second equation of this system has no solution, because if

m = 2,
then

2 X9 Mm —9 6.01 Xom = —8.02,
and if

m = 1.99,



then

2 X9 M —2 6.01 Xom = —7.97.
So

b= AC
does not exist.

In this case the triangle has no sides and has three vertices. So, in this situation, we can denote
the triangle as A ABC but not as Aabc.

Let us consider three straight lines

a:y=1,

b:y=3xqx,

c:y=—6Xq9x+4911.
Let us try to find a vertex A opposed to line a, which means that

A=bnNec
that is, we have the system
y=3 Xazx,
y:—6 Xo & +9 11.
So we have
y=3 xXax,
3Xgx=—6Xgx+4911,
and thus
Y= 3 X2 Ly
3Xox—+96 Xox=11.
The second equation of this system has no solution, because if
x=1.22,
then
3 X9 & +9 6 Xo & = 1098,
and if
x=1.23,
then

3 X9x+96 X9z =11.07.



So the point A does not exist.

Let us try to find a vertex B opposed to line b, which means that

B=anNc,
that is, we have the system

y=1,
y=—6xox+211.
So we have

{yzL
1=—-6x22+211,

{y:L
—17= -6 X9 X.

The second equation of this system has no solution, because if

and thus

x = 2.83,
then
—6 X2z = —16.98,
and if
r = 2.84,
then

—6 X9 x = —17.04.
So the point B does not exist.

Let us try to find a vertex C opposed to line ¢, which means that

C=anhy,
that is, we have the system

y:3><2:1:,
y=1,
or

y=3Xaux,
1=3 X9 &.
The second equation of this system has no solution, because if



z = 0.33,

then
3 X9 x = 0.99,
and if
x=0.34,
then
3 X9 & = 1.02.

So the point C does not exist.

In this case the triangle has three sides and no vertices. So, in this situation, we can denote the
triangle as Aabc but not as AABC.

Theorem 10.5.
In Mathematics with Observers geometry, there are triangles with three sides and three vertices, with
three vertices and no sides, and with three sides and no vertices.

10.4 The center of a circumscribed circle of a triangle
Problem: Find the center of a circumscribed circle around a triangle ABC' in E;Ws.

Points:

A(6,2), B(—4,4),C(2, —6).
Equation of straight line containing segment AB:

y=—0.2Xx9x+4+493.2.
Equation of straight line containing segment BC': does not exist.

Equation of straight line containing segment AC":

Y= 2 X9 x —9 10.
Center of segment AB: D(1, 3)

Despite the nonexistence of the straight line containing segment BC, the center F of BC' does
exist: F'(—1, —1). The center of segment AC: E(4, —2). Now we find the perpendicular
bisectors of AB and AC. The perpendicular bisector of AB has a slope 5. The perpendicular
bisector of AC has a slope —0.5. The equation of perpendicular bisector of AB:

y=>5Xgx +2b.



We have

3:5X21—|—2b.
Then

b= -2
So the equation of perpendicular bisector of AB is

Yy = 5 X9 & —9 2,
and the equation of perpendicular bisector of AC is

Yy = —-0.5 Xo & +9 b.
We have

—2=-0.5 X9 4 +32 b.
Then

b=0.
So the equation of perpendicular bisector of AC is

Yy = —0.5 X9 T.
Despite the nonexistence of the straight line containing segment BC', vector BC does exist:

BC = (6,—10),
and we can consider straight line f containing the point F(—1, —1) and perpendicular to vector

BC. We are looking for the equation of line f as

Yy= k X2 T +2 b’
and we get

1=k X9 (—1) +39 b,
6><21—210><2k:0,
and thus

k= 0.6,
b= -0.4,
that is, the equation of straight line f containing point F and perpendicular to vector BC is

y=0.6 xgx —20.4.
The intersection point of the two perpendicular bisectors of AB and AC'"

{y:5X2$—22,
y:—0.5><2a:.



So the point of intersection is 0(0.37, —0.15).

Now we find the squares of distances from this point to the vertices of the triangle:

|OA| x5 |OA|= (6 —2 0.37) x (6 —2 0.37) +3 (2 42 0.15) x (2 45 0.15) = 36.27,

|OB| x2 |OB|= (—4 —20.37) x (=4 —20.37) +2 (4 42 0.15) x (4 +2 0.15) = 36.26,

|OC| x5 |OC|= (2 —20.37) x (2 —20.37) 45 (—6 42 0.15) x (—6 45 0.15) = 36.76.
So we get that

|OA|*# |OBP?,
[0A]*# |OCP,
|0B|*# |0C/?,

and thus the point O is not the circumcenter of the triangle ABC.

The intersection point of the perpendicular bisector of AB and line f:

y= 5 Xo T —3 27
y=10.6 xXox —20.4.
So the point of intersection does not exist because we must have

5><2a:—22=0.6><2m—20.4,

but

5 X9 X —2 0.6 X9 X = 1.62
if x = 0.36, and

5 X9 XL —29 0.6 X9 X = 1.57
if x = 0.35.

The intersection point of the perpendicular bisector of AC and line f:

y=—0.5 x2x,
y=10.6 X9 —90.4.
So the point of intersection does not exist because we must have

—0.5X9x =0.6 X9 —9 04,
but

—0.5 X9 & —9 0.6 Xo & = —0.33
if x = 0.3%, and

—0.5 Xo & —9 0.6 X9 & = —0.44



if x = 0.4%, where +=0,1,...,9.
Finally, we can say that the circumcenter of the triangle ABC' does not exist.

Now let us try to find the center of circumscribed circle around the triangle ABC' in E;W, with

A(0,0), B(2,0),C(0,2).
Equation of straight line containing segment AB:

y=0.
Equation of straight line containing segment BC'":

Yy=— 43 2.
Equation of straight line containing segment AC"

xz=0.
Center of segment AB:
D(1,0).
Center of segment AC":
E(0,1).
Center of segment BC"
F(1,1).

Now we find equations of the perpendicular bisectors of segments AB, AC, and BC. The

equation of perpendicular bisectors of segment AB is

z=1.
The equation of perpendicular bisectors of segment AC is

y=1.
The equation of perpendicular bisectors of segment BC'is

y==o
The intersection point of these three perpendicular bisectors is

0(1,1).

Now we find the distance from this point to the vertices of the triangle:

|OA| = |OB| = |AB| = V2 = 1.42.
So the point O is the circumcenter of triangle ABC.



We can formulate a final theorem.

Theorem 10.6.
In Mathematics with Observers geometry for n = 2, there are triangles with existing circumcenter, and
there are triangles with nonexisting circumcenter.

Note that the theorem is correct for all n > 2.

10.5 The orthocenter of a triangle
Problem: Find the orthocenter of a triangle ABC' in E;Ws.

Let’s try to find the orthocenter of triangle ABC in E5W, with

A(0,0), B(2,0),C(0,2).
Equation of straight line containing segment AB:

y=0.
Equation of straight line containing segment BC'":

Yy=—T+92.
Equation of straight line containing segment AC":

z=0.
Now we find the perpendiculars from vertex C to side AB, from vertex B to side AC, and from
vertex A to side BC:

Perpendicular from vertex C to side AB has the equation

z=0.
Perpendicular from vertex B to side AC' has the equation

y=0.
Perpendicular from vertex A to side BC' has the equation

Y=z
The intersection point of the three perpendiculars is

A(0,0).
So the point A is the orthocenter of the triangle ABC.

Now let us try to find the orthocenter of triangle ABC' in E;Ws with

A(0,0), B(0,2), C(0.72, —0.72).



Equation of straight line containing segment AB:

xz=0.
Equation of straight line containing segment BC'":

Yy = —3.80 X9 x 449 2.
Equation of straight line containing segment AC"

Y= —x.
Now we find the heights from vertex C to side AB, from vertex B to side AC, and from vertex A
to side BC'.

Height h¢ from vertex C to side AB has the equation

y=—0.72.
Height hp from vertex B to side AC has the equation

Y=+ 2.
Height h 4 from vertex A to side BC' has the equation

Yy = 0.28 X9 X.
The intersection points of these heights are

h4 Nhg= (—2.70,—-0.70),

h4 Nhc=(—2.80,—0.72).

hg Nhe= (—2.72,-0.72).
So this triangle has no orthocenter.

Let us consider the triangle with vertex points

A(6.01,2.01),

B(—4,4),

C(2, —6).
We have proved above (see section “Vertices and sides of triangle”) that this triangle has no
sides. However, we can consider the vectors AB, AC, BC and instead of standard heights,

consider straight lines a, b, ¢ such that

Aca, al BC,
Beb, bl AC,

Cee, cl AB
We get



BC= (6,—10),

AC= (—4.01,-8.01),

AB= (-10.01,1.99).
Let straight line g have the equation

y=kxax +2d.
We have

2.01 =k x26.01 +24d,
6X21—210X2k20,
and we get

k= 0.6,
d = —1.59,

y=0.6 X2 —91.59.

that is, straight line o has the equation

Let straight line b have the equation

Y= k Xo T +29 d.
We have
4=k X9 (—4) +9 d,
—4.01 x91—98.01 x5 k=0,
and we get

—4.01 X9 1 —9 8.01 X9 k= -0.01
if k = —0.50, and

—4.01 X591 —958.01 x5k =0.08
if k = —0.51. This means that line b does not exist.

Let straight line ¢ have the equation

Yy = k Xo & +9 d.
We have

—-6=k X9 2+2 d,
—10.01 X9 1 +9 1.99 X9 k= 0,
and we get

k = 5.06,
d=—16.12,



that is, straight line ¢ has the equation

Yy = 5.06 X9 X —9 16.12.
So this triangle has no orthocenter.

We can formulate the final theorem.
Theorem 10.7.
In Mathematics with Observers geometry for n = 2, there are triangles with existing orthocenter, and

there are triangles with nonexisting orthocenter.
Note that the theorem is correct for all n > 2.

10.6 The center of inscribed circle of triangle

In classical geometry the center of inscribed circle of a triangle is the point intersection of the

angle bisectors.
Let us first consider several cases.

A.Let n = 2. Consider two straight lines

a:y=20
and
b:z=0
Then
aﬂb:O(0,0).

Let us take the point P(1, 1), and consider the straight line

OP:y=z.
The equation of circle Q with center in point P with radius 1 is

Q:(z—21)x2(x—21)+2(y—21) x2(y—21) =1.
Let us find the intersection of line OP and circle Q:

OPﬂQ2X2(($—21)X2(.’1}—21)):1

Taking £ —9 1 = 0.7, where + means any digit from the set 0,1,...,9, we get

2x90.49=0.98 < 1.
Taking  —9 1 = 0.8%, we get

2x90.64=1.28>1,



that is,

OPNQ=A,
where A is the empty set.

This means that there is no triangle with sides o and b and inscribed circle Q such that the third

side of this triangle is perpendicular to line O P and tangent to Q.

B. Let n = 2. Consider two straight lines

a:y=20
and
b:z=0
Then
anb=0(0,0).

Let us take the point P(1.29,1.29) and consider the straight line

OP:y=z.
The equation of circle Q with center in point P with radius 1.29 is

Q: (m —9 1.29) X9 (.’L‘ —9 1.29) +5 (y —9 1.29) X9 (y —9 1.29) =1.29 x51.29 = 1.62.
Let us find the intersection of line OP and circle Q:

OPNQ:2x, ((x—21.29) x5 (z —2 1.29)) = 1.62.
Taking £ —9 1.29 = 0.9%, where » means any digit from the set 0,1,...,9, we get

2 Xo (0.9* ><20.9*) =2 x50.81 =1.62,
that is,

T —91.29 = £0.9%
or



z —3 1.29= 0.90,
z —51.29=0.91,
T —51.29= 0.92,
z —51.29= 0.93,
z —21.29= 0.94,
z —5 1.29= 0.95,
z —3 1.29= 0.96,
z —31.29=0.97,
z —5 1.29= 0.98,
T —3 1.29= 0.99

or

x —9 1.29= —0.90,
x —921.29= —0.91,
T —9 1.29= —0.92,
T —9 1.29= —0.93,
T —2 1.29= —0.94,
T —91.29= —0.95,
T —91.29= —0.96,
x —92 1.29= —0.97,
T —9 1.29= —0.98,
T —91.29= —0.99.
This means that in the first case, we have

x1= 2.19,
x2= 2.20,
x3= 2.21,
r4= 2.22,
r5= 2.23,
xe= 2.24,
x7= 2.25,
x3= 2.26,
x9= 2.27,
T19= 2.28,
and in the second case, we have



x11= 0.39,
r12= 0.38,
x13= 0.37,
x14= 0.36,
r15= 0.35,
x16= 0.34,
x17=0.33,
r18= 0.32,
x19= 0.31,
x90= 0.30.
This means that in the first case, we have ten points L = OP N (Q:

L1(2.19,2.19),
L(2.20,2.20),
L3(2.21,2.21),
L4(2.22,2.22),
L5(2.23,2.23),
Lg(2.24,2.24),
L(2.25,2.25),
Lg(2.26,2.26),
Lo(2.27,2.27),

L10(2.28, 2.28).
This means that in the second case, we have ten points M = OP N €}

M;(0.39,0.39),
M(0.38,0.38),
M;(0.37,0.37),
M;(0.36,0.36),
( )
( )
( )
( )

S

0.35,0.35),
6(0.34,0.34),
M,(0.33,0.33),
Ms(0.32,0.32),
My(0.31,0.31),
M14(0.30,0.30).
Let us consider the straight lines ¢; (¢ = 1,2, ..., 10) containing points L; and perpendicular
to line OP:

5

S

Cily=—$+2di.
So



c1:yYy= —x +-4.38,
c2 Y= —x +2 4.40,
c3: Y= —x +94.42,
cq Y= —x +9 4.44,
cs : y= —x +2 4.46,
Cg : Y= —x +9 4.48,
¢yt y= —x +9 4.50,
cg :y= —x +24.52,
Cg : Y= —x +9 4.54,

c1 : Y= —x +-o 4.56.
Let us consider the straight lines ¢; (7 = 11,12, ..., 20) containing point M; and
perpendicular to line OP:

Ci i Y= —T+26;.

So

c11 Y= —x +2 0.78,

c12 1 y= —x +2 0.76,

c13 1 y= —x +4 0.74,

Cciy : Y= —x +-0.72,

Ci5 : Y= — +2 0.70,

c16 : Y= — +- 0.68,

c17 1 Y= — +2 0.66,

ci18 : y= —x +2 0.64,

C19 : Y= —x +2 0.62,

Coo : Y= —x +2 0.60.
Note that all straight lines ¢;,7 = 1, 2, ..., 20, are parallel to each other and tangent to one
circle Q.

So we have obtained an intermediate theorem.

Theorem 10.8.
In Mathematics with Observers geometry, there is a circle with more than two parallel lines tangent to
this circle.

Let us now consider intersections of lines ¢;,2 = 1,2, ..., 10, with lines a and b. We get



(4.38,0)
C>(4.40,0)
C3(4.42,0)
aNecg= C4(4.44,0),
aNes= C5(4.46,0),
aNcg= Cp(4.48,0),
a N cr;= C7(4.50,0),
acg= 8(4 52, 0),
aNcg= Cy(4.54,0),
ancip= C10(4.56 0),
bNei= Bl(O 4.38)
b N co= By(0,4.40)
bNc3= B3(0,4.42)
bNca= 4(0 4.44),
b cs= Bs(0,4.46),
( )

( )

( )

)

)
b

I

b N ce= Bg(0,4.48
b N cy;= B7(0,4.50
b N cg= Bg(0,4.52
bNcg= Bg(() 4.54),
b N c1o= B1y(0,4.56).

)
b

b

1. Let us take three points O(0, 0), B;(0,4.38), and C;(4.38, 0). The straight line
B1C'1 = ¢ has the equation

BlCl Y= +2 4.38

Now taking the points

K(0,1.29) €b
and

N(1.29,0) € a,
we get

PK = PN = PL; =1.29.
Now we are interested in whether the line B; P exists or not. Let us find the equation of the
straight line B P:

y:kXQ.’L‘-i-Q b,
438 = 0 X k43 b,
1.29 = 1.29 x5 k +5 b.



So

k= —-2.43,
b =4.38,
and, finally, the equation of the straight line B P is

Yy = —2.43 X9 & 49 4.38.
Let us consider three vectors

B K= (0,—-3.09),

B:L,= (2.19,—-2.19),

B, P= (1.29,—3.09).
We get

(B1K, BiK)= 0 x50 13 (—3.09) x5 (—3.09) = 9.54 > 0,
(BlLl,BlLl): 2.19 X9 2.19 +9 (—219) X9 (—219) =9.54 > 0,
that is,

(BlK, BlK) - (BlLla BILI)-
Now let us consider

(B1K, B1P)=0 x5 1.29 +5 (—3.09) x5 (—3.09) = 9.54 > 0,
that is,

(B1K,B,P) = (B1Ly, B, P).
This means that the straight line B P is an angle B; bisector and that the point P is the
intersection of the bisectors of angles O and Bj.

So we have obtained an intermediate theorem.

Theorem 10.9.

In Mathematics with Observers geometry on the plane, there are a circle and a point out of this circle
such that there are two tangent lines to this circle through this point with equal segments between
this point and touch points.

2. Let us take three points O(0, 0), B2(0,4.40), and C5(4.40, 0). The straight line
ByC'5 = ¢ has the equation

Bng Yy=- +9 4.40.
We get

PK = PN = PLy = 1.29.



We are interested whether the line By P exists or not.

Let us find the equation of the straight line B P:

y=kxXqx+2b,
440 =0 x9k+2b,
{1.29 =1.29 X9 k+5b.
So

k= —2.45,
b = 4.40,
and, finally, the equation of the straight line By P is

Yy = —2.45 Xo & +39 4.40.
Let us now consider three vectors

ByK=(0,-3.11),
By L= (2.20, —2.20),
ByP= (1.29, —3.11).

We get
(BQK, BzK): 0 X9 0 +9 (—311) X9 (—311) = 9.67 > 0,
(BQLQ,BQLz): 2.20 x92.20 +9 (—2.20) X9 (—2.20) = 9.68 > 0,
that is,
(ByK, BoK) # (ByLs, BoLo).
We have

(BQK, BQP): 0 X9 1.29 “+9 (—311) X9 (—311) = 9.67 > 0,
(BaLa, ByP)= 2.20 x5 1.29 +5 (—2.20) x3 (—3.11) = 2.82 +5 6.84 = 9.66 > 0,
that is,

(B2K, BaP) # (B2Lsy, B2 P).
This means that with chosen vectors Bo K, Bo L2, By P, the straight line B P is not an angle
B> bisector and the point P is not an intersection of the bisectors of angles O and Bs.
3. Let us take three points O(0, 0), B3(0,4.42), and C3(4.42, 0). The straight line
B3(C's = c3 has the equation

Bs(Cs:y= —x +24.42.
We get

PK = PN = PL3 =1.29.



We are interested in whether the line B3 P exists or not.

Let us find the equation of the straight line B3 P:

y=kXaox+2b,
442 =0 x9k+2b,
{1.29 =1.29 X9 k+5b.
So

k=—-247,
b=4.42,
and, finally, the equation of the straight line B3P is

Y= —2.47 Xo & +39 4.42.
Let us consider three vectors

BsK= (0,—-3.13),
B;Ls= (2.21, —2.21),
BsP= (1.29, —3.13).

Then
(BgK, BgK): 0 X9 0 +9 (—313) X9 (—313) =9.79 > 0,
(B3L3,B3L3): 2.21 x92.21 45 (—2.21) X9 (—2.21) =9.76 > 0,
that is,
(BsK, BsK) # (BsLs, BsLs).
We have

(B3K, BsP)=0 x5 1.29 45 (—3.13) x5 (—3.13) = 9.79 > 0,
(Bng,BgP): 2.21 X9 1.29 “+2 (—2.21) X9 (—3.13) = 2.82 —+9 6.84 = 9.74 > 0,
that is,

(BsK, B3P) # (BsLs, B3P).
This means that with chosen vectors B3 K, B3L3, B3P, the straight line B3 P is not an angle
B3 bisector and the point P is not an intersection of bisectors of angles O and Bs.
4. Let us take three points O(0, 0), B4(0,4.44), and C4(4.44, 0). The straight line
B4C'y = ¢4 has the equation

ByCy:y=—x +924.44.
Then

PK = PN = PLy = 1.29.



We are interested in whether the line B4 P exists or not.

Let us find the equation of the straight line B4 P:

y=kXaox+2b,
444 =0 x9k+2b,
{1.29 =1.29 X9 k+5b.
So

k= —2.49,
b=4.44,
and, finally, the equation of the straight line B4 P is

Y= —2.49 Xo & +39 4.44.
Let us consider three vectors

ByK= (0,-3.15),
ByL,= (2.22,—2.22),
ByP= (1.29, —3.15).

Then
(B4K,B4K)=0 x50 +3 (—3.15) x5 (—3.15) = 9.91 > 0,
(B4L4,B4L4): 2.22 X9 2.22 +9 (—2.22) X9 (—2.22) =9.84 > 0,
that is,
(B4K, B4K) # (B4L4, B4Lys),
and

(B4K, B4P)= 0 x5 1.29 45 (—3.15) x5 (—3.15) = 9.91 > 0,
(B4L4,B4P): 2.22 X9 1.29 “+2 (—2.22) X9 (—3.15) =2.84 —+9 6.98 = 9.82 > 0,
that is,

(B4K, B4P) # (BsL4, B4P).
This means that with chosen vectors B4 K, B4L4, B4P, the straight line B4 P is not an angle
By bisector and the point P is not an intersection of bisectors of angles O and Bj.
5. Let us take three points O(0, 0), B5(0,4.46), and C5(4.46, 0). The straight line
B5C's = c5 has the equation

B5Cs : y= —x +2 4.46.
Then

PK = PN = PLs = 1.29.



We are now interested in whether the line By P exists or not.

Let us find the equation of the straight line B P:

y=kXaox+2b,
4.46 =0 xXok+2b,
{1.29 =129 X9 k+45b.
Taking k = —2.49, we get

1.29 + 3.15 = 4.44 < 4.46,
whereas taking k = —2.50, we get

1.29 + 3.18 = 4.47 > 4.46.
So the line Bs P does not exist.
6. Let us take three points O(0, 0), Bg(0,4.48), and C¢(4.48, 0). The straight line
BsCs = cg has the equation

BsCs - y= —x +24.48.
We get

PK = PN = PLg = 1.29.
We are now interested whether the line B¢ P exists or not.

Let us find the equation of the straight line B¢ P:

y=kXax +2b,
4.48 =0 x9k+3 b,
{1.29 =1.29 X9 k+5b.
Taking k = —2.51, we get

1.29 4 3.19 = 4.48,
and, finally, the equation of the straight line BgP is

Y= —2.51 X9 x 49 4.48.
Let us consider three vectors

BgK=(0,—-3.19),

BsLe= (2.24,—2.24),

BgP= (1.29,-3.19).
Then



(BsK, BoK)= 0 x50 +5 (—3.19) x5 (—3.19) = 10.15 > 0,
(BﬁLG, BGLG): 2.24 x92.24 +- (—2.24) X9 (—2.24) = 10.00 > 0,
that is,

(BsK,BsK) # (BgLg, BsLs),
and

(BGK, B(;P): 0 x91.29 44 (—3.19) X9 (—3.19) = 10.15 > 0,
(B(}LG,BBP): 2.24 x91.29 +9 (—2.24) X9 (—3.19) =2.86+27.12=9.98 > 0,
that is,

(BsK, B¢ P) # (BgLg, BsP).
This means that with chosen vectors B¢ K, BgLg, Bg P, the straight line Bg P is not an angle
Bg bisector and the point P is not an intersection of bisectors of angles O and Bs.
7. Let us take three points O(0, 0), B7(0,4.50), and C7(4.50, 0). The straight line
B7C'7 = c¢7 has the equation

B:C7:y= —x +24.50.
Then

PK = PN = PL; =1.29.
We are now interested in whether the line B7 P exists or not.

Let us find the equation of the straight line B7 P:

y=kXgox+9b,
4.50 =0 X2k +20b,
{1.29 =1.29 X9 k+5b.
Taking k = —2.53, we get

1.29 + 3.21 = 4.50,
and, finally, the equation of the straight line B; P is

Yy = —2.53 Xo I +29 4.50.
Let us consider three vectors

B;K= (0,-3.21),

B;L,;= (2.25,—-2.25),

B7;P= (1.29,-3.21).
We have



(B7K, B7K): 0 X9 0 +9 (—321) X9 (—321) =10.30 > 0,
(B7Lz7, B;L7)= 2.25 x5 2.25 +5 (—2.25) x5 (—2.25) = 10.08 > 0,
that is,

(B7K,B7K) # (ByL7, B7L7),
and

(B7K, B7P): 0 x91.29 45 (—3.21) X9 (—3.21) =10.30 > 0,
(B7L7, B7P): 2.25 x91.29 +9 (—2.25) X9 (—3.21) = 2.87 42 7.21 =10.08 > 0,
that is,

(B7K, B7P) # (B7L7, B7P).
This means that with chosen vectors By K, B7L7, B P, the straight line B7 P is not an angle
By bisector and the point P is not an intersection of bisectors of angles O and By.
8. Let us take three points O(0, 0), Bg(0,4.52), and Cg(4.52, 0). The straight line
Bg(C's = cs has the equation

Bg(Cg:y= —x +24.52.
We have

PK = PN = PLg = 1.29.
We are now interested in whether the line Bg P exists or not.

Let us find the equation of the straight line Bg P:

y=kXgox+9b,
4.52 =0 %9k +9 b,
{1.29 =1.29 X9 k+5b.
Taking k = —2.55, we get

1.29 4 3.23 = 4.52,
and, finally, the equation of the straight line B; P is

Yy = —2.55 Xo I +29 4.52.
Let us consider three vectors

BsK= (0,—-3.23),

BgLs= (2.26, —2.26),

BsP= (1.29, —3.23).
We get



(BgK, BgK): 0 X904 (—323) X9 (—323) =10.42 > 0,
(BsLs, BsLg)= 2.26 x5 2.26 +5 (—2.26) x5 (—2.26) = 10.16 > 0,
that is,

(BsK, BgK) # (BsLsg, BgLsg),
and

(BgK, BgP): 0 x91.29 +5 (—323) X9 (—323) =10.42 > 0,
(BsLs, BsP)= 2.26 x5 1.20 +5 (—2.26) x 2 (—3.23) = 2.88 +5 7.28 = 10.16 > 0,
that is,

(BsK, BsP) # (BgLs, BsP).
This means that with chosen vectors Bs K, BgLg, BsP, the straight line Bg P is not an angle
Bg bisector and the point P is not an intersection of bisectors of angles O and Bs.
9. Let us take three points O(0, 0), By(0,4.54), and C9(4.54, 0). The straight line
ByC'9 = c9 has the equation

ByCy:y= —x +24.54.
We have

PK = PN = PLg = 1.29.
We are now interested in whether the line Bg P exists or no.

Let us find the equation of the straight line Bg P:

y=kXgox+9b,
4.54 =0 x99k +9 b,
{1.29 =1.29 X9 k+5b.
Taking k = —2.57, we get

1.29 4 3.25 = 4.54,
and, finally, the equation of the straight line By P is

Yy = —2.57 Xo I +29 4.54.
Let us consider three vectors

ByK= (0,-3.25),

BgLy= (2.27,—-2.27),

ByP= (1.29,-3.25).
We have



(BgK, BgK): 0x90+9 (—3.25) X9 (—3.25) =10.54 > 0,
(Bng, Bng): 2.27 X9 2.27 49 (—2.27) X9 (—2.27) =10.24 > 0,
that is,

(ByK,ByK) # (BgLgy, ByLy),
and

(BgK, BQP): 0 x91.29 +5 (—325) X9 (—325) =10.54 > 0,
(ByLg, ByP)= 2.27 x5 1.20 +5 (—2.27) x 2 (—3.25) = 2.89 +5 7.35 = 10.24 > 0,
that is,

(B9K, BgP) # (ByLg, ByP).
This means that with chosen vectors Bg K, BgLg, BgP, the straight line Bg P is not an angle
By bisector and the point P is not an intersection of bisectors of angles O and By.
10. Let us take three points O(0, 0), B10(0,4.56), and C10(4.56, 0). The straight
line B19C19 = c10 has the equation

B19C1 : y = —x +2 4.56.
We have

PK — PN = PLqyy = 1.29.
We are interested in whether the line By P exists or not.

Let us find the equation of the straight line By P:

y=kXgox+9b,
4.56 =0 X2k +20b,
{1.29 =1.29 X9 k+5b.
Taking k = —2.59, we get

1.29 4 3.27 = 4.56,
and, finally, the equation of the straight line By P is

Yy = —2.59 Xo I +29 4.56.
Let us consider three vectors

BioK= (0,-3.27),
BigL1o= (2.28, —2.28),
BioP= (1.29, —3.27).
We get



(BlOK, BlOK): 0 X904 (—3.27) X9 (—3.27) = 10.66 > 0,
(BloLIO, BIOLlo): 2.28 X9 2.28 49 (—2.28) X9 (—2.28) =10.32 > 0,
that is,

(BiK, BigK) # (B1oL1o, BioL1o),
and

(BloK, BlOP): 0 X9 1.29 “+9 (—327) X9 (—327) = 10.66 > 0,
(BioL10, B1oP)= 2.28 x5 1.29 +5 (—2.28) x5 (—3.27) = 2.90 +5 7.42 = 10.32 > 0,
that is,

(BwK, B1oP) # (BioL1o, BioP).
This means that with chosen vectors B19g K, B1gL19, B1oP, the straight line B1oP is not an

angle Bj bisector and the point P is not an intersection of bisectors of angles O and Bjy.

So we have obtained an intermediate theorem.

Theorem 10.10.

In Mathematics with Observers geometry on the plane, there are a circle and a point out of this circle
such that there are two tangent lines to this circle through this point with not equal segments
between this point and touch points.

Let us now consider vertices C}; in triangles OB;C;,7 = 1,2,...,10.
1. Now we have to check whether the straight line C'; P exists or not.

Let us find the equation of the straight line C' P:

y:kX2CL'+2 b7
0=4.38 xak+20,

So
b= —4.38 x5 k,
1.29 =1.29 X9 k —9 4.38 X9 k.
For k = —0.40, we get
1.29 < 1.34,
and for k£ = —0.39, we get
1.29 > 1.20,

that is, the straight line C'; P in the class of straight lines



Yy = k x 9 & +9 b
does not exist.
2. Now we have to check whether the straight line Cy P exists or not in this class of

straight lines.

Let us find the equation of the straight line C P:

y:kX2$+2 b’
0=14.40 X2k +2 b,
1.29 =1.29 x5 k +5 0.

So
b= —-4.40 x, k,
1.29 = 1.29 X9 k —9 4.40 x4 k.
For k = —0.40, we get
1.29 > 1.28,
and for k = —0.41, we get
1.29 < 1.31,

that is, the straight line C's P in the class of straight lines

Yy = k Xo & +9 b
does not exist.

3. Now we have to check whether the straight line C's P exists or not in this class of

straight lines.

Let us find the equation of the straight line C3 P:

y=kxa2z+20,
0=4.42 sz—l-zb,
1.29 =1.29 xo k +2 0.

So
b=—-4.42 X9 k,
1.29 =1.29 X9 k —9 4.42 X9 k.
For k = —0.40, we get
1.29 > 1.28,

and for k = —0.41, we get



1.29 < 1.31,
that is, the straight line C's P in the class of straight lines

y=kxXqox+9b
does not exist.
4, Now we have to check whether the straight line Cy P exists or not in this class of

straight lines.

Let us find the equation of the straight line C'y P:

y=kXxqx+2b,
0=14.44 X9k +2 b,
1.29 = 1.29 X9 k 44 b.

So
b= —4.44 xs k,
1.29 =1.29 X9 k —9 4.44 x5 k.
For k = —0.40, we get
1.29 > 1.28,
and for k = —0.41, we get
1.29 < 1.31,

that is, the straight line C'4 P in the class of straight lines

Y= k X9 & +9 b
does not exist.

5. Now we have to check whether the straight line C5 P exists or not in this class of

straight lines.

Let us find the equation of the straight line C's P:

Yy = k X9 x +9 b,
0= 4.46 x5 k +9 b,
{1.29 =1.29 X2 k+2b.
So

b= —4.46 x5 k,
1.29 =1.29 X9 k —94.46 %9 k.
For k = —0.40, we get



1.29 > 1.28,
and for k = —0.41, we get

1.29 < 1.31,
that is, the straight line C'5 P in the class of straight lines

Yy = k x 9 X +9 b
does not exist.
6. Now we have to check whether the straight line C'¢ P exists or not in this class of

straight lines.

Let us find the equation of the straight line Cg P:

y:kx2m+2 b7
0=4.48 xok+2b,
1.29 =1.29 x5 k +5 0.

So
b= —4.48 x3 k,
1.29 = 1.29 X9 k —9 4.48 X9 k.
For k = —0.40, we get
1.29 > 1.28,
and for k = —0.41, we get
1.29 < 1.31,

that is, the straight line C'¢ P in the class of straight lines

Y= k Xo T +9 b
does not exist.

7. Now we have to check whether the straight line C'; P exists or not in this class of
straight lines.

Let us find the equation of the straight line C'; P:

y=kxa2z+20,
0=4.50 X9 k+9b,
{1.29 = 1.29 ok +2b.
So



b= —4.50 x5 k,
1.29 =1.29 x2 k —2 4.50 x2 k.
For k = —0.39, we get

1.29 > 1.26,
and for k£ = —0.40, we get

1.29 < 1.32,
that is, the straight line C'; P in the class of straight lines

y=kXox+9b
does not exist.
8. Now we have to check whether the straight line C's P exists or not in this class of
straight lines.

Let us find the equation of the straight line Cg P:

y:kx2m+2 b7
0=4.52 xok+2b,
1.29 =1.29 x5 k +5 0.

So
b= —4.52 x5 k,
1.29 =1.29 x9 k —94.52 x5 k.
For k = —0.39, we get
1.29 > 1.26,
and for k = —0.40, we get
1.29 < 1.32,

that is, the straight line C's P in the class of straight lines

Y= k Xo T +9 b
does not exist.

o. Now we have to check whether the straight line C'g P exists or not in this class of
straight lines.

Let us find the equation of the straight line C'g P:



y:kx2m+2 b7
0=4.54 xok+2b,
1.29 =1.29 x5 k +5 0.

So
b= —4.54 x4 k,
1.29 = 1.29 X9 k —9 4.54 X9 k.
For k = —0.39, we get
1.29 > 1.26,
and for k = —0.40, we get
1.29 < 1.32,

that is, the straight line Cg P in the class of straight lines

y=kxXgox+9b
does not exist.
10. Finally, we have to check whether the straight line C( P exists or not in this
class of straight lines.

Let us find the equation of the straight line C';o P:

y=kxox+2b,
0=4.56 X2k+2b,
1.29 =1.29 x9 k +9 0.

So
b= —4.56 X9 k,
1.29 =1.29 x2 k —2 4.56 x2 k.
For k = —0.39, we get
1.29 > 1.26,
and for k = —0.40, we get
1.29 < 1.32,

that is, the straight line C';o P in the class of straight lines

Y= kxox+2b
does not exist.

So the lines



c,P, i=1,2,...,10,
do not exist in the considered class of lines

y=kxXgx+9b, 0=kxqox+90b.
However, let us consider the lines C; P in the general class of straight lines

exXox+o fXoy+ag=20
with

n:27 e,f,g,e><2:c,f><2y,e><2a:+gf><2y€WQ.

1. Let us check the existence for line Cy P (¢ = 1). So let us find the equation of
the straight line C'y P in the general class of straight lines

eXoT+a fXoy+29=0,
e><24.38+2f><20+2g=0,
€ X9 1.29+2f><2 129+gg:0

So
e = 0.50,
f=1.22,
g= —2.15,

that is, the straight line C'; P in the general class of straight lines

exXo+o fXoy+29=0
exists and has the equation

0.50 X9z +91.22 X9y —22.15 = 0.
We get

PK = PN = PL; =1.29.
So we now know that the line C; P exists. Let us consider three vectors

C1N= (-3.09,0),

C1L;= (—2.19,2.19),

C1P= (—3.09,1.29).
We get

(CLN,C1N)= (—3.09) x5 (—3.09) +2 0 x2 0 = 9.54 > 0,
(ClLl,ClLl): (—219) X9 (—219) +92.19 X5 2.19 = 9.54 > 0,
that is,

(ClN, ClN) = (ClLl, ClLl),



and

(ClN, Clp): (—309) X9 (—309) +9 0 X9 1.29 = 9.54 > 0,
(C1L1, Clp): (—2.19) X9 (—3.09) +922.19 X21.29 = 6.75 +2 2.79 = 9.54 > 0,
that is,

(C1N,C{P) = (C1L,C1P).
This means that with chosen vectors C'y N, C L1, C1 P, the straight line C P in the general
class of straight lines is an angle C'; bisector and the point P is an intersection of three
bisectors of angles O, By, and C}.
2. Let us check that for line Cs P (¢ = 2). Let us find the equation of the straight
line Cy P in the general class of straight lines

eXoT+a fXoy+29=0,
e><24.40+2f><20—i—zg:0,
€ Xo 1.29—|—2f><2 129+zg:0

So
e = 0.50,
f=1.27,
g = —2.20,

that is, the straight line Cs P in the general class of straight lines

exo+2 fX2y+29=0
exists and has the equation

0.50 X9z +91.27 X9y —22.20 = 0.
Let us take three points O(0, 0), B(0,4.40), and C5(4.40, 0). The straight line BoCs = ¢

has the equation

BzCz CYy=- +9 4.40.
We get

PK = PN = PLy, =1.29.
So we now know that the line Cy P exists. Let us consider three vectors

CyN= (-3.11,0),

CyLy= (—2.20,2.20),

CyP= (—3.11,1.29).
We get



(CQN, CzN): (—3.11) X9 (—3.11) 490 %x50=29.67 >0,
(CQLQ, CQLQ): (—2.20) X9 (—2.20) 42 2.20 X9 2.20 = 9.68 > 0,
that is,

(CaN,C3yN) # (CyLy, CoyLs),

and

(CQN, CQP): (—311) X9 (—311) +9 0 X9 1.29 = 9.67 > 0,
(C3Ls, CoP)= (—2.20) x3 (—3.11) +2 2.20 x5 1.29 = 6.84 +5 2.80 = 9.64 > 0,
that is,

(C2N,CyP) # (CaLy, CoP).
This means that with chosen vectors Cs [N, C3 L2, Cy P, the straight line C P in the general
class of straight lines is not an angle C'y bisector and the point P is not an intersection of

bisectors of angles O and C5.

We can formulate final theorems.

Theorem 10.11.

In Mathematics with Observers geometry, there are triangles with existing inscribed circle with center in
the intersection of three angle bisectors.

Theorem 10.12.

In Mathematics with Observers geometry, there are triangles with nonexisting three angle bisectors but
with an existing inscribed circle.

10.7 Special equilateral triangle
Let n = 6. Let us consider the A(OAB) with

O(0,0); A(2,3.464102); B(4,()).
Then

|OA| = [AB| = |OB| = 4,

because

2 X6 2 +¢ 3.464102 x ¢ 3.464102 = 4 +4 12 = 16,
that is, A(OAB) is the equilateral triangle with sides 4.

Let us find the equation of the side OA:



y=k Xgx+gb,
0=0 X6 k—|-6 b,
{3.464102 — 2 xg kg b
We get

b=0, k=1.732051.
So the equation of side OA is

y = 1.732051 x¢ .
Let us find the equation of the side OB:

y=kx¢z+6b,
{0:0X6k+6b,

0=4xgk+gb.
We get
b=0, k=0
So the equation of side OB is
y=0.

Let us find the equation of the side AB:

y=kXxgz+gb,
3.464102 = 2 xXg k +¢ b,
{0 =4 x6k+6b,
3.464102 —g 2 xg k = b,
{0 =4 xXgk+63.464102 —¢ 2 x¢ k.
We get

b =6.928204, k= —1.732051.
So the equation of side AB is

y = —1.732051 x¢ x +¢ 6.928204.
Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

K(1,1.732051); 0(3,1.732051); L(2,0).
Let us now consider the vector

OA = (2,3.464102)
and find the equation of straight line f containing the point K(1,1.732051) and perpendicular
to the vector OA:



y:kX(;LE—f—@b.
We get

1.732051 =k x¢ 1 +4 b,
{2 X6 1+¢3.464102 x¢ k = 0,
1.732051 —g k xg 1 = b,
{2 Xg 1 +¢3.464102 x4 k = 0.
So line f does not exist, because

2 Xg1+4g3.464102 x4 (—0.577352) = 0.000001 >0
and

2 xg 144 3.464102 x4 (—0.577353) = —0.000002 < 0.
The equation of straight line g containing the point L(2, 0) and perpendicular to the straight
line OB is

Let us now consider the vector

AB = (2,-3.464102)
and find the equation of straight line h containing the point C'(3,1.732051) and perpendicular
to the vector AB:

y:kX693+6b.
Weget

1.732051 = k xg 3 +4 b,
{2 Xg1l—¢3.464102 x4 k =0,
1.732051 —6 k X6 3= b,
{2 Xe1l—g3.464102 x¢ k = 0.
So line h does not exist, because

2 xXg1—63.464102 x4 0.577352 = 0.000001 > 0
and

2 xg1—43.464102 x4 0.577353 = —0.000002 < 0.
This means that A(OAB) has only one side bisector and only one height and has no center of

circumscribed circle and no orthocenter.

Let us find the equation of the median OC'":



y=kxgz+¢b,
0=0 X6 k—|-6 b,
{1.732051 =3 Xg k +¢b.
So we get

b=0,
but k does not exist, because

3 x60.577350 = 1.732050 < 1.732051
and

3 x4 0.577351 = 1.732053 > 1.732051.
So the median OC does not exist.

The equation of the median AL is

T =2.
Let us find the equation of the median BK:

y=kxe¢x+¢b,
0=4xgk+¢0,
{1.732051 =1Xxgk+gb.
So

b=-4 X6 k,
1.732051 =1 xg k —¢ 4 X k,
but k does not exist, because

1 xg (—0.577350) —64 Xg (—0.577350) = 1.732050 < 1.732051
and

1 %6 (—0.577351) —g 4 x6 (—0.577351) = 1.732053 > 1.732051.
So the median BK does not exist. This means that the centroid of A(OAB) does not exist.

Let us now find the bisectors of angles O, A, B if they exist. Let us start from angle AOB. First,
we have the vectors

OA = (2, 3.464102)
and

OB = (4,0)
Moreover,



(OA, OA): 16 > 0,
(OB, OB): 16 > 0,
and thus

(OA,0A) = (0B, 0B).
The equation of the straight line /, angle AOB bisector is

y=k Xgx +gb.
Since O € [, we get

b=0,
that is, the equation of straight line / is

Y= k X6 T,
and the direction vector | of line / is

1= (1,k).
We must have

(OA, l) = (OB, l),
that is,

2 Xg1+g3.464102 x4 k=4 Xg1l+g0 xg k,
3.464102 x ¢ k= 2.
However, k does not exist, because

3.464102 x4 0.577352 = 1.999999 < 2
and

3.464102 x¢ 0.577353 = 2.000002 > 2.
So an angle AOB bisector does not exist.

The equation of straight line m, angle O AB bisector is

x = 2.
Let us now find the angle B bisector. We have

BA= (—2,3.464102),

BO= (—4,0),
(BA,BA)= 16 > 0,
(BO,BO)= 16 > 0
(BA,BA)= (BO, BO).



The equation of straight line p, angle O BA bisector is

Yy = k % 6L +6 b.
The direction vector p of line p is

p = (1,k).
We must have

(BA-7 p) - (B07 p)a
that is,

(—2) X6 1 +6 3.464102 X6 k= (—4) X6 1 +6 0 X6 k,
3.464102 x¢ k= —2.
However, k does not exist, because

3.464102 x4 (—0.577352) = —1.999999 > —2
and

3.464102 x4 (—0.577353) = —2.000002 < —2.
So the angle OB A bisector does not exist.

So we have proved the following:

Theorem 10.13.

The special equilateral triangle has only one side bisector, only one height, only one median, and only
one angle bisector, and thus this triangle does not have the center of a circumscribed circle,
orthocenter, centroid, and center of an inscribed circle.

10.8 Amazing triangle

Let us consider the triangle O A B with sides

OA:y=6x,2; OB:y=3x,x; AB:y=-3Xx,x+,9.
Then O(0,0).

A:



y==06x,uz,
y=—-3XxXpx+,9,
66X, x=—-3XxX,x+,9,

IX, =9,
z=1,
y =06,

thatis, A(1,6).
B:

y=3 Xpx,
y:_3 an+n9a
3Xpxr=—-3X%X,2x+,9,

6 xXp,x=09,
xz=1.5,
y = 4.5,

thatis, B(1.5,4.5).

Let us consider all these lines and points in EyW,, thatis, n = 2.

Theorem 10.14.
There are no lines perpendicular to sides AO, BO, and AB.

Proof.

Let us find k that satisfies the condition

6 x9 k= —1,
k= —0.16,
6 x9 —0.16= —0.96 > —1,
k= —0.17,

6 X9 —0.17= —1.02 < —1.
So k does not exist. This means that there are no lines perpendicular to AO.

Let us find k that satisfies the condition

3 X9 k= —1,
k= —0.33,
3 x5 —0.33= —0.99 > —1,
k= —0.34,

3 X9 —0.34= —1.02 < —1.
So k does not exist. This means that there are no lines perpendicular to BO.



Let us find k that satisfies the condition

—3 X9 k= —1,
k= 0.33,
6 x5 0.33=0.96 > —1,
k= 0.34,

—3 x20.34= —-1.02 < —1.
So k does not exist. This means that there are no lines perpendicular to AB.
Theorem 10.15.
The triangle O AB has no perpendicular bisector for each side.
Theorem 10.16.
The triangle O A B has no center of a circumscribed circle.
Theorem 10.17.
The triangle O AB has no center of an inscribed circle.
Theorem 10.18.
The triangle O AB has no heights.
Theorem 10.19.
The triangle O A B has no orthocenter.
Theorem 10.20.
The triangle O A B has three medians but has no centroid.

Proof of the last theorem.
Let L, M and N be the midpoints of OA, AB, and OB:

L(0.5,3); M(1.25,5.25); N(0.75,2.25).

Median BL:
y=15 xox+22.25.
Median OM:
y=4.21 x5 .
Median AN:

Y= 15 X9 X —2 9.
Let us first find BL N AN and consider the system

y=1.5Xxyx+22.25,
Yy = 15 X9 T —9 9.
Let us try to solve this system:

0=15 X9 X —9 1.5 X9 X —9 11.25.
If



x = 0.84,

then
12.6 —51.24 —5 11.25 > 0,
and if
xz = 0.83,
then

12.45 —5 1.23 —5 11.25 < 0.
So this system has no solution, and

BLNAN =A.
Let us find BL N OM and consider the system

Yy = 1.5 X9 & 9 225,
y=4.21 Xy .
Let us try to solve this system

0=1.5 X9 X —9 4.21 Xo & +9 2.25.
The solution of this system is

xz = 0.83,
and

BLNOM = (0.83, 3.48).
Let us find AN N OM and consider the system

y=15 X9z —5 9,
y=4.21 %o x.
Let us try to solve this system:

0=15 ><2:1}—24.21 ><2$—29.

If
xz = 0.83,
then
12.45 —5 3.48 —2 9 = —0.03 < 0,
and if

x = 0.84,
then



12.6 —5 3.52 —5 9 = 0.08 > 0.
So this system has no solution, and

ANNOM = A.
Thus the triangle OAB has no centroid. ©

10.9 The length of segment

Let us consider the segment

AB = [0, 1]
with middle point

x = 0.50.
The same situation takes a place in Mathematics with Observers geometry. So we have n = 2.

Let us consider the segment

AB = [0,1.01].
This segment does not have a middle point because if

z = 0.5,
then
0.5 —20=0.5,
1.01 —5 0.5= 0.51,
and
0.5 < 0.51,
and if
x = 0.51,
then
0.51 —2 0= 0.51,
1.01 —5 0.51= 0.5,
and

0.51 > 0.5.
Let us consider the segment A B on the plane with

A = (0.08,0.01), B =(0.06,0.03).
Then the length of the segment AB can be calculated by the formula



|AB| = \/(0.06 —20.08) x2 (0.06 —2 0.08) +2 (0.03 —2 0.01) X2 (0.03 —2 0.01) = /0 +2
So the length of the segment AB is

|AB| = 0.00,0.01, . ..,0.09.
Let us consider the segment AB on the plane with A = (0,1) and B = (1, 0). This segment
AB is a part of straight line

a:y=—x+- 1.
Since C'(0.01,0.99) € a, we have

AC| = /(0 —50.01) x5 (0 —3 0.01) +5 (1 —3 0.99) x5 (1 — 0.99) = V0,
that is,

|AC\ = 0.00,0.01,...,0.09.
We have

[BO| = /(1 —20.00) x5 (1 —5 0.01) +3 (0 0.99) x5 (0 —3 0.99) = /0.81 5 0.81 = V1

that is,

|BC’| = 1.29.
We have

AB| = /(0 —21) x2 (0 —21) +2 (1 —20) x2 (1 20) = VI +21= V2,
that is,

|AB| = 1.42.
We have the following question: is the equality

|AB| = \AC! +2 \BC’|
correct? We have

1.42 > 1.29 +, [0.00,0.01,...,0.09] = [1.29,1.3,...,1.38],
that is, the length of the segment in this case is greater than the sum of lengths of its parts. Note
that

AB = ACUCB.
Let C be the midpoint of segment AB. Then C(0.5,0.5). Let us find the lengths of AC and CB.
We have

AC] = /(0 ~20.5) x2 (0 —2 0.5) +2 (1 —2 0.5) x2 (1 —2 0.5) = 1/0.25 +20.25 = v035.




Suppose

v 0.5 =0.7.
However,
0.7 x2 0.7 =0.49 # 0.5.
If
v 0.5 =0.71,
then
0.71 x5 0.71 = 0.49 # 0.5,
and so on. If
v 0.5 = 0.79,
then
0.79 x5 0.79 = 0.49 #£ 0.5.
If
V0.5 = 0.8,
then

0.8 x20.8=0.64 > 0.5.
So |AC| does not exist.

We have

ICB| = \/(1 —50.5) x5 (1 =5 0.5) 45 (0 —5 0.5) x5 (0 —5 0.5) = 1/0.25 +5 0.25 = v0.5.

Suppose

v 0.5 =0.7.
However,
0.7 x20.7=10.49 7£ 0.5.
If
v 0.5 =0.71,
then

0.71 x5 0.71 = 0.49 # 0.5,
and so on. If



V0.5 = 0.79,

then
0.79 x20.79 = 0.49 #£ 0.5.
If
V0.5 = 0.8,
then

0.8 x30.8=0.64 > 0.5.
So | BC| does not exist. Let us find the length of AB:

AB| = /(02 1) %2 (0—2 1) +2 (1 —20) x5 (1 —20) = v/I 121 = v2 = 142,
So |AB| = 1.42, and thus

AB = ACUCB.
However, | AB| is defined and equals 1.42, but |AC| and | BC| are not defined.

Let us consider the straight line

y=—+22
and take the intersection of this line with positive half-axis x, y: A(0,2) and B(2,0), and then
C(1,1) is the middle point of segment AB. Let us find the lengths of AC and CB:

ACI= /2=21) %2 (2 =2 1) +2 (0= 1) x2 (02 1) = I3 1 = V2 = 142,

|CB|= \/(0 1) X3 (0—21) 2 (2—21) x5 (2—21) = /1451 = V2 =142,
Let us find the length of AB:

|AB|:\/(2_20)X2(2—20)+2(0—22)X2 =4+,4=1v8=284.
We have

2.84 =1.42 +,1.42.
So we get the situation where

AB=ACUCB
and

|AB| = |AC| +» |CB|.

Let us consider the straight line



y=—T+23
and intersection of this line with positive half-axis , y, that is, the points A(0, 3) and B(3, 0).
Then C(1.5, 1.5) is the middle point of segment |AB|. Let us find the lengths of AC and CB.
We have

AC| = /(3 —21.5) x2 (3 —2 1.5) +2 (0 —2 1.5) x2 (0 —2 1.5) = v/2.25 2 2.25 = v/4.5.

If

V4.5 = 2.12,
then
2.12 x5 2.12 =4.49 < 4.5,
and if
V4.5 = 2.13,
then

2.13 x5 2.13 =4.53 > 4.5.
Thus | AC| does not exist. We have

CB| = /(0 —21.5) x2 (0 —2 1.5) +2 (3 —2 1.5) x2 (3 —2 1.5) = v/2.25 2 2.25 = V45,

and so |CB] also does not exist.

Let us find the length of AB:

|AB|:\/(3—20)><2(3—20)+2 (0—23) x2(0—23)=+/9+29=+18.

If
V18 = 4.24,
then
4.24 x5 4.24 = 17.96 < 18,
and if
V18 = 4.25,
then

4.25 X9 4.25 = 18.04 > 18,
and so | AB| does not exist. We get the situation where

AB = AC UCB,



but the lengths of AB, AC, and C'B do not exist.
Let us consider the straight line

y=-—-x+24
and the intersection of this line with positive half-axis x, y, that is, the points A(0,4) and B(4,0)
. Then C(2, 2) is the middle point of segment AB. Let us find the lengths of AC and C'B:

|AC|= \/(4 —22) X9 (4—22) 42 (0 —22) X3 (0 —22) = /4424 =8 =284,

CBl= /(0 —22) x5 (0—22) +2 (4—22) x5 (4 —22) = V4 454 = VB = 2.84
Let us find the length of AB:

|AB|:\/(4—20) X2(4—20)+2(0—24) X2(0—24):\/16+216:\/33

If
V32 = 5.66,
then
5.66 x5 5.66 = 31.96 < 32,
and if
V32 = 5.67,
then

5.67 x2 5.67 = 32.06 > 32,
and so | AB| does not exist. So we get the situation where

AB = ACUCB,
but the length of AB does not exist, and

|AC| + |CB| = 5.68.
Let us consider the straight line

y=—x +20.09
and the intersection of this line with positive half-axis x, y, that is, the points A(0, 0.09) and
B(0.09,0). The segment AB has 10 points. So the middle point of segment AB does not exist.
Let us take the point C'(0.05,0.04) and find the lengths of AC and C'B:



|AC|= \/(0.09 —50.04) x5 (0.09 —3 0.04) +5 (0 —3 0.05) x5 (0 —3 0.05) = /0420 = V0.
|AC|=0,0.01,...,0.09,

|CB|: \/(0 —9 005) X9 (0 —9 005) +9 (004 —9 009) X9 (004 —9 009) = \/O ) 0= \/6

|CB|=0,0.01,...,0.09.
Let us find the length of AB:

|AB|= 1/(0.09 3 0) x5 (0.09 —3 0) +5 (0 — 0.09) x5 (0 — 0.09) = /0 +5 0 = V0,

|AB|=0,0.01,...,0.09.
So we get the situation where

AB = AC UCB,

and we have three different possibilities:

|AB| = |AC| + [CB,
for example,

0.04= 0.03 + 0.01;
|AB|> |AC| + |CB,
for example,

0.04 > 0.02 + 0.01;
and

|AB| < |AC| + |CB|,
for example,

0.04 < 0.05 + 0.05.
Let us consider the straight line

y=—x+32
and three points on this line: A(0, 2), B(2,0), and C(0.82,1.18). Let us find the lengths of AC
and C'B. We have

AC| = /(2 —21.18) x5 (2 —2 1.18) 2 (0 —2 0.82) x2 (0 —2 0.82) = /0.64 1 0.64 = 1/

If

(1.28) = 1.13,
then



1.13 x5 1.13 = 1.27 < 1.28,
and if

(1.28) = 1.14,
then

1.14 x5 1.14 = 1.29 > 1.28,
and so | AC| does not exist. Also,

|CB|= \/(0 —21.18) X3 (0 —2 1.18) +5 (2 —2 0.82) X3 (2 —2 0.82)

= /1.37 42 1.37 = V2.74 = 1.69.
Let us find the length of AB:

AB| = /(2 -20) x5 (2 —50) +5 (0 —52) x5 (0 —52) = /A +5 4 = VB = 2.84.

So we get the situation where

AB = ACUCB,
|AB| and |C'B]| both exist, but |AC| does not exist.

Let us consider the straight line

Y= —T+32
and its three points A(0.15,1.85), B(2,0), and C(1,1). Let us find the lengths of AC and C'B:

AC| = 1/(0.15 =2 1) x5 (015 3 1) +2 (1 —2 1.85) x2 (1 —2 1.85) = v/0.64 1 0.64 = 1/

and thus | AC| does not exist,

\CB|:\/(1—22) X5 (1 —52) 45 (1 —50) X5 (1 —50) = \/1+21_\/7)—1.42.

Let us find the length of AB:

AB| = /(0,15 —5 2) x5 (0.15 —5 2) +3 (1.85 — 0) x5 (1.85 —5 0) = /3.34 1, 3.34 =

If

V6.68 = 2.59,
then

2.59 X9 2.58 = 6.61 < 6.68,
and if



V6.68 = 2.6,

then

2.6 x22.6 =6.76 > 6.68,
and so | AB| does not exist. So we get the situation where

AB = ACUCB,
|C'B| does exist, but |AC| and |AB| do not.

From the previous examples we have the following:

Theorem 10.21.
Segments on the plane E2W,, may have unique lengths, several lengths, or no lengths. If
AB = AC U CB,

then we have several possibilities:

1. |AB|, |AC|, and |CB| do not exist.
2. | AB| does not exist, but | AC| and |C'B]| do exist.
3. | AB| does exist, but | AC| and |CB| do not exist.
4. |AB| and |BC| exist, but | AC| does not exist.
5. |AB| and |AC| do not exist, but |C'B| does exist.
6. |AB|, |AC|, and |CB| exist, and
(6.1) |AB| = |AC| + |CB|,
(6.2) |AB| > |AC| + |CB|, or
(6.3) |AB| < |AC| + |CB.
Notes.
1. In the case where the length of segment is not unique, then we have to consider

different ways of comparison and summation.

2. We have illustrated these statements for n = 2, that is, for E5W5,. However, the

theorem is correct for all n.



10.10 Midsegments of a triangle

Let us consider triangle ABC with A(z 4,y4), B(xp,y5), C(zc,yc), and the midpoints
L(zp,yr), M(zp,ym), N(zn,yn) of segments AB, AC, and BC, respectively.

Suppose we know L, M, N and we have to find A, B, C. For the x-coordinates, we have

2Xpxp =TA+nTB,
2Xpxy =g +n 2o,
2XpoNy =T +nTc,
TB=2XpnTL —nTA,

2Xp Ty =TA +nTo,
wC:2anN_n2anL+nan
TB=2XpnTL —n T4,

To =2 Xp Ty —n Ty,

T =2Xp TN —n2 Xy TL +n Ty,
TC=2XpnTN —n2Xn&L +n x4,
$C:2Xn$M_nmAa
mC:2><11*’I3N_112><7LxL"|’1z:I:A7
{2 XnTL +n2Xn M —n2Xn TN =2 Xp XA,
wC:2Xan_nmAa

TA=ZTL +n XM —n TN,
CCB:2XnCCL_nwL_an+ana
To=2Xp Ty —n TL —n T4,
TA=TL +tnTM —n TN,

TB =TL tn TN —n TM,

To =Ty tn TN —n L.

For the y-coordinates, we have

YA = YL oYM —n YN,
YB =YL +n YN —n YM,

Yo =YM +n YN —n YL,
that is, the coordinates of the vertices of the triangle ABC are

A(wL +n TM —nZIN,YL +n YMmM —n yN)a
B(xL +n IN —nTM,YL +n YN —n yM),

C(zm +n TN —nTL,YM +n YN —n YL)-
These formulas coincide with the formulas of classical Euclidean geometry.



Let us consider several examples with n = 2.

Example 1.

L(-1,0), M(0,1), N(1,—1).In this case, A(—2,2), B(0,—-2), C(2,0).
Let us check two classic statements:

a: 2 x5 |MN| = |AB|, 2 x5 |LN| = |AC|, 2 x5 |LM| = | BC|;

s

MN || AB,LN || AC, LM || BC.

Let us start from o:

IMN|= /12 4,22 = v/5 = 2.24,
|AB|= /22 45 42 = v/20 = 4.48,
INL|= V22 4512 = V5 = 2.24,
|AC|= /42 1522 = V5 = 4.48,
IML|= V12 4512 = v/5 = 1.42,
|BC|= /22 +,2? = V5 = 2.84,

that is,

2 x5 [MN| = |AB|, 2 x3|LN|=|AC|, 2 xs|LM|=|BC)|.
Let us go to b:

MN:y=—-2Xsx+51,
AB:y=—-2X9x —22,
NL:y=—-0.5 %92 —50.5,
AC :y=—-05x9x +51,
ML :y=x+21,
BC:y=x+51,

that is,

MN || AB, LN || AC, LM | BC.
Example 2.

L(—1.08,0.24), M(—0.14,1.22), N(1.16 — 1.28). In this case, A(—2.38, 2.74),
B(0.22, —2.26), C(2.1,—0.30).

Let us check two classic statements:



>

a: 2 x9|MN|=|AB

.2 %5 |LN| = |AC

.2 x4 |LM| = |BC

b: MN || AB,LN | AC, LM || BC.

Let us start from a:

IMN|=+/1.32 +,2.52 = v/7.94,

that is, | M N| does not exist,
|AB|= 1/2.62 +, 52 = v/31.76 = 5.64,
INL|= \/2.242 45 —1.54% = /7.33 = 2.71,

|AC|= \/—4.482 42 3.04% = v/29.24,
that is, | AC| does not exist,

|IML|= \/0.942 45 0.98%2 = v/1.62 = 1.29,

|BC|= \/—1.882 42 —1.96% = V/7.13,

BC| does not exist. So statement a is not true in this case.

that is,

Let us go to b: the lines M N and AB do not exist, that is, statement b is not true in this case.

So we have proved the following theorem for n = 2, but it is correct for all n.
Theorem 10.22.
In Mathematics with Observers geometry, for all n > 2, the statements
2 x5 |MN| = |AB|, 2x,|LN|=|AC|, 2x,|LM|=|BC|,
MN | AB, LN | AC, LM | BC
are correct for some triangles and incorrect for some other triangles.



11 Observability and planes, lines, and vectors

11.1 Plane and vectors
1) Let us consider plane o € E3W,, containing the origin point O(0, 0,0):

a1 X9& +2a9 X9y +a0as XgZ:O
with

(a1, a9, a3) # (0,0,0).
Let us take any point A(z,y, z) € a and consider two vectors

a= (al,a2’ a3); OA = (-'L',y, Z).
Since the scalar product

(a,0A) =0,
we have that

al OA
for all points A(z,y, 2) € a.

Now take two points B(x1,y1, 21), C(x2, y2, 22) € a and the corresponding vectors

OB = ($1,y1,21); oC = (9327 Y2, 22)-
Let us assume that

OB } OC.
We have the scalar products

(a,0OB)=0,

(a,0C)=10

and the vector product

OB x OC = (y1 Xn 22 —n 21 Xp Y2, —F1 Xp 22 T 21 X T2, L1 X Y2 —n Y1 X7 T3)-
Question: Is it true that

a| OB x OC?
(Here || is understood in the Euclidean sense.)

2) Let n = 2, and we are in E3W,. Let us plane a have the equation

a:T+oy+92=0.



So

a=(1,1,1).
Let us take two points B(1,1, —2),C(—1,—3,4) € « and the corresponding vectors

OB = (1,1,-2); OC = (—1,-3,4).
We get

OB x OC= (1 x24 —3(—2) x2(—=3), =1 X24 +2 (—2) x2(—1),1 x2(=3) —21 x2
= (-2,-2,-2),
(OB,0B x OC)=1 x3(—2) 421 x5 (—2) +2(—2) x5 (—2) =0,
(OC, 0B x OC)= (—1) X3 (—2) 43 (—3) X3 (=2) 424 x5 (—2) = 0.
In this case, we have the positive answer,

a || OB x OC,
because

-2 x5a=0B x OC.
3) Let n = 2, and we are again in F5W,. Let plane a have the equation

a:0.81 X2$+20.63 X2y—|—2220,
and so

a = (0.81,0.63,1).
Let us take two points B(0.73,0.34, —0.74), C(0.26,0.91, —0.70) € « and the corresponding

vectors

OB = (0.73,0.34,—-0.74); OC = (0.26,0.91, —0.70).
We get

OB x OC
= (0.34 x5 (—0.70) —5 (—0.74) x0.91,
—0.73 x5 (—0.70) 43 (—0.74) x5 0.26,
0.73 x20.91 —5 0.34 x5 0.26)
= (0.42,0.35,0.57),
(OB, 0B x OC) = 0.73 x5 0.42 +50.34 x5 0.35 +5 (—0.74) x5 0.57 = 0.02 # 0,
(OC,0B x OC) = 0.26 x0.42 +0.91 x5 0.35 +5 (—0.70) x20.57 = 0.

So in this case, we have the negative answer,

aH OB x OC,
because



2 x5 0B x OC= (0.84,0.70, 1.14) =+ a,
1.99 x5, OB x OC= (0.78,0.62, 1.02) =+ a,
and

0.50 x5 a= (0.40,0.30,0.50) # OB x OC,
0.51 xp2a= 0.50 x2 a,

0.59 x5 a= 0.50 x5 a,
0.60 x2 a= (0.48,0.36,0.60) # OB x OC,
0.61 x5 a= 0.60 x5 a,

0.69 x9a= 0.60 x5 a.
So we have proved the following theorem for n = 2, but it is correct for all n.

Theorem 11.1.
In Mathematics with Observers geometry, for all n > 2, the statement
al OB x OC

is correct for some situations and incorrect for some other situations.

11.2 Line and vectors

1) Let us consider straight line a € E3W,, containing the origin point O(0, 0, 0) with the system
of equations

{afl Xn & +p a2 Xpn Y+, a3 an:07
bl an+nb2 Xny+nb3 an:Oa
with planes in EsW,,,

Q0] Xp& +pa9 XpY+na3 X, 2=0,
(0,1,0,2,0,3) 7& (anao)a
/B:bl Xnm+nb2 Xny+nb3 XnZ:O,

(bla b2a b3) 7& (0) 07 0))
such that

anf#a; anNB#p

Now let us take any two points A(z1,y1, 21), B(®a, Y2, 22) € a; A # B, and consider the vectors

a= (a'b as, a’3); b = (bb b27 b3)a OA = (xla Y1, zl); OB = (x27 Y2, Z?)'
Since the scalar products



we have

for all points A, B € a.

We also have the vector product

ax b = (ay X, b3 —p a3 X, by, —a1 X5, bg 45, ag Xy, by, a1 X by —p by X, a2).
Questions: a) OA || a X b?

b) OB || OA?
2) Let n = 2, and we are in E3W,. Let plane a have the equation

a:x+2y—+92=0,
and let plane B have the equation

B:x—oy+o2=0.
So

a= (1,1,1),
b= (1,-1,1).
Let us take two points A(1,0,—1), B(—2,0,2) € a and the corresponding vectors

OA = (1,0,—1); OB = (-2,0,2).
We get

axb=(1x21—-21x2(-1),1x31—31x%31,1x5(—1)—21x21)=(2,0,-2),
2 x9OA=a x b,
—2 x5 OA= 0B,
and in this case, we have the positive answers to questions a) and b):

OA || ax b,
and



OB || OA.
3) Let n = 2, and we are again in F3W,. Let plane a have the equation

a:0.81 xX9x +50.63 X2y—|—22=0,
and let plane B have the equation

/3 : 0.51 Xo X 9 0.08 X9 Y +2 0.59 X9 2 = 0.
So

a= (0.81,0.63, 1),
b= (0.51,0.08, 0.59).
Let us take two points A(0.73,0.34, —0.74), B(0.70,0.39, —0.74) € a and the corresponding

vectors

OA = (0.73,0.34,-0.74); OB = (0.70,0.39, —0.74).
We get

ax b= (0.63 X90.59 —31 x50.08,1 x50.51 —50.81 x50.59,0.81 x50.08 —0.63 x4 0.51)
= (0.22,0.11, —0.30).
We have

0.49 x5 OA= (0.28, 0.12, —0.28) #axb,
0.50 x3s OA= (0.35, 0.15, —0.35) #axb,
and

3.39 xsa X b= (0.72,0.36, —0.99) # 0A,
3.40 x9a x b= (0.74,0.37, —1.02) # OA.
This means that

OA }faxb.
We also have

0.49 x5 OB= (0.28,0.12, —0.28) # a X b,
0.50 x5 OB= (0.35,0.15, —0.35) # a X b,
and



3.19 x, a xb =(0.68,0.34,-0.93) # OB,
3.20 x, ax b = (0.70, 0.35,-0.96) + OB,

ooooooooooooooooooooooooooooooooooo

3.29 x, a x b = (0.70,0.35, -0.96) + OB,
3.30 x, a x b = (0.72,0.36, -0.99) # OB.

This means that

OB }fa x b.
We also get

1.00 x, OA= (0.73,0.34, —0.74) # OB,
0.99 x; OA= (0.63,0.27, —0.63) # OB,
1.10 x, OB= (0.77,0.42, —0.81) # OA,
( )

1.09 x, OB= (0.70,0.39, —0.74) # OA.
This means that

OB )t OA,
and in this case, we have the negative answers for questions a) and b).

So we have proved the following theorem for n = 2, but it is correct for all n.

Theorem 11.2.
In Mathematics with Observers geometry, for all n > 2, the statements
OA||axb
and
OB || OA

are correct for some situations and incorrect for some other situations.
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